建设项目环境影响报告表

是12月1日 (污染影响类)

项目名称:港理大(惠州 建设单位 (盖章): 港里九 (惠州

编制日期:

打印编号: 1739004346000

编制单位和编制人员情况表

项目编号		909c87				
建设项目名称		港理大 (惠州) 大亚湾技术创新研究院有限公司实验室项目				
建设项目类别		45098专业实验室、研2	发(试验)基地			
环境影响评价文件	类型	报告表				
一、建设单位情况	52	Sanda N Poster lan		113		
单位名称 (盖章)		港理大 (惠州) 大亚湾县	5水创新研究院有限公			
统一社会信用代码	1	91441304MADT3AB789				
法定代表人 (签章	()	郑子剑子和	a t	TAIN THE		
主要负责人 (签字)	陈栋栋 剑小	法 林林			
直接负责的主管人	员 (签字)	陈栋栋 7	京村、福、			
二、编制单位情况	5	S. T. R.	SE			
单位名称 (盖章)		惠州市中惠益部科1304MAC 2000W4G				
统一社会信用代码		91441304MAC				
三、编制人员情况	Z.	THE WAY	7			
1. 编制主持人						
姓名	明小学	证书管理号	信用编号	签字		
邹洪芹	- 120240	0544000000080	BH030247	邻战生		
2. 主要编制人员						
姓名		编写内容	信用编号	签字		
(地方	建设项目基本情 析、区域环境质 标及评价标准、 措施、环境保护	况、建设项目工程分 量现状、环境保护目 主要环境影响和保护 措施监督检查清单、	BH030247	舒波片		

— 2 —

— 3 —

编制单位承诺书

本单位惠州市中惠益新科技有限公司(统一社会信用 代 码91441304MACG5PWW4G)郑重承诺:本单位符合《建 设项目环境影响报告书(表)编制监督管理办法》第九条第 一款规定,无该条第三款所列情形,不属于(属于/不属于) 该条第二款所列单位;本次在环境影响评价信用平台提交的下 列第1项相关情况信息真实准确、完整有效。

- 1. 首次提交基本情况信息
- 2. 单位名称、住所或者法定代表人(负责人)更的
- 3. 出资人、举办单位、业务主管单位或者上靠单位等变更的
- 4. 未发生第3项所列情形、与《建设为目环境影响报告书(表)编制 监督管理办法》第九条规定的符义性变更的
- 5. 编制人员从业单位已变更或者已调离从业单位的
- 6. 编制人员未发生第5项列情形,全职情况变更、不再属于本单
- 7 弘正其本情報人自

承诺单位(公章):

25年2月8日

广东省社会保险个人参保证明

姓名							
	邹洪芹			证件号码	4206	6241996031	37624
			参	保险种情况			X-KILL
4 Л	4-1 -1 1	n.l. X=1		¥ /-		参保险种	17
参保	起止	时间		科技	养老	工伤	失业
202408	1	202501	惠州市:惠州市中	惠益新科技有限公司	ATT.	6	6
	截止		2025-02-05 13:52	,该参保从累计月数合	计分析激集6个月,缓然0个月	实险缴费 6个户,缓 缴0个事	实际缴费 6个月,缓 缴0个月
备注:				alv	网办业	务专用章	
本《参保·	证明性实现	》标注的 施缓缴企	ル 社	力资源社会 、学 部办公 () (粤 人 之规〔 2022 〕 亍 国 之 说务总局广东省	、厅 国家税务总 11号)、《沪 省税务局关于实 て件实施范围内	局办公厅分 东首人力资 施扩大阶段	关于特困 源和社会 性缓缴社
会保险费 土保费单	政策位缴	实施范围 费部分。	型	规(302) 15号) 等文	文件实施范围内	的企业申请	缓缴三项
				",			
证明机构	构名	你(证明	专用章)	证明时间	2025-02-	-05 13:52	
			XX				
		X					
		Chi					
		.,					
X	_						
O. I							

编制人员承诺书

本人邹洪芹(身份证件号码420624199603137624)郑重承 诺: 本人在惠州市中惠益新科技有限公司单位 (统一社会 信用代码91441304MACG5PWW4G)全职工作, 影响评价信用平台提交的下列第4项相关情况信 整有效。

承诺人(签字): 都法生

一、建设项目基本情况

建设项目名称	港理大(惠州)	大亚湾技术创新	研究院有限公司实验室项目
项目代码		2412-441303-04	-03-992267
建设单位联系人	郑子剑	联系方式	184*****
建设地点		亚湾西区科技创 (惠州大亚湾经济	新园科技路 5 号孵化楼 B 栋 技术开发区)
地理坐标	(东经: 114度	30分8.520秒; 1	比纬: 22度44分 53 54秒)
国民经济 行业类别	M7320 工程和技术研究和试验发展	建设项目	四十五、研究和试验发展 -98、专业实验室、研发(试 基地-其他
建设性质	☑新建(迁建) □改建 □扩建 □技术改造	建设项目・申报情形・	図 次申报项目 2 不予批准后再次申报项目 □超五年重新审核项目 □重大变动重新报批项目
项目审批(核准/ 备案)部门(选填)	惠州大亚湾经济 技术开发区管理 委员会经济发展 和统计局	1	2412-441303-04-03-992267
总投资 (万元)	1500	环保投资(万 元)	120
环保投资占比(%)	3 0.8	施工工期	1 个月
是否开工建设	% 古 □是:	用地 (用海) 面积 (m²)	4972.72
THE WAY TO SEE THE SEE			告表编制技术指南(污染 项评价设置原则表",判断

专项评价设置情况

项目是否需要设置专项评价,判断依据如表 1-1。

表 1-1 项目专项评价设置情况一览表

专项评 介的类 别	设置原则	项目情况	是否设 置专项 评价
大气	排放废气含有毒有害污染物、二噁英、苯并[a] 芘、氰化物、氯气且厂界外 500 米范围内有环境空气保护目标的建设项目。	项目排放废气含 有甲醛,且 500m 范围内有环境空 气保护目标。	是

	T	1					
	地表水	新增工业废水直接排放 建设项目(槽罐车外送 至污水处理厂的除外); 新增废水直排的污水集 中处理厂。	项目无工业废水 直接排放。	否			
	环境风 险	有毒有害和易燃易爆危 险物质存储量超过临界 量的建设项目。	项目不存在有毒 有害和易燃易爆 危险物质存储量 超过临界量的情 况。	否			
	生态	取水口下游 500 米范围 内有重要水生生物的自 然产卵场、索铒场、越 冬场和洄游通道的新增 河道取水的污染类建设 项目。	项目不涉及取水口。	THE STATE OF THE S			
	海洋	直接向海排放污染物的 海洋工程建设项目。	项 不涉及向海 说 放污染物。	否			
	土壤	、声环境不开展专项		,			
		(水源和热水、矿泉水、	温泉等特殊地下水	水资源保			
		D.K.	学价。 第七元 (15) (15)				
	1、惠州	AIXV.	〔专项评价。 ————————————————————————————————————	// 東川十			
	1、悪州	THE STATE OF THE S	管理委员会办公室 ************************************				
구민 구기왕丰 시그	亚湾经济苏木开发区管理委员会关于印发<大亚湾新兴产业 业 发展规划>的通知》(惠湾管函[2021]46号);						
规划情况	惠州市发展和改革局《广东惠州环大亚湾新区发展总体						
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	规划修编》(2020-2035年)。						
规划环境	《广东惠	- 兵州环大亚湾新区发展 <i>总</i>	总体规划修编》(2	020-2035			
评价情况	年)附件	三 环境影响篇章					
- <u>*</u> ****	1、与《	惠州大亚湾经济技术开	发区管理委员会关	关于印发<			
\"	大亚湾新兴产业园产业发展规划>的通知》相符性分析						
规划及规划环境	《大》	、亚湾新兴产业园产业//	定展规划》发展目	标为:实			
影响评价符合性分析	现产业、	创新、开放性和产业规	M模四个维度,以	创新引领			
	为核心,	大幅提升产业科技含量	量,打造"3+14"产	业集聚区			
	和产业组	l团,包括智能制造、信 	言息产业、绿色人	工智能与			

未来产业三大产业集聚区,十四个产业组团。实施创新驱 动发展战略,加快形成具有一定竞争力的,促进更多优势 领域发展壮大并成为大亚湾新兴产业园支柱产业,持续引 领园区产业升级和高质量发展。

(二)信息产业集聚区

依托大亚湾新兴产业园电子信息产业的良好基础和毗 邻"广深港澳科技创新走廊"的区位优势,在龙山方 龙海三路以北打造信息产业集聚区,由四个产业4对构成, 具体是新一代电子信息制造业组团、5G通信产业组团、数 字创意产业和科技服务业组团。

5.新一代电子信息制造业组员

5好基础,以原响水河工业 区区块为载体,重点发展从一代电子信息产业,加强与深 产业**的**同,完善新一代电子信息产业链, 息制造业组团。

6.5G通**线**业组团

亚迪在汽车电子、IGBT、智能网联和汽车电池 生产、集成与分销实力,鼓励扶持引导基于5G通 术的芯片设计、晶圆制造、封装测试和下游应用,发 展5G通信全产业链,设立中小企业集中发展区,打造5G通 信产业组团。

7.数字创意产业组团

依托合生地块正在规划建设的"粤港澳大湾区青年创 新创业园项目",发展以"互联网+创意"为核心的数字创意 产业。在粤港澳大湾区青年创新创业园内及周边设立中小 企业集中发展区,引导园区创新创业资源向中小企业开放, 促进"互联网+创意"企业集聚发展。

3

8.科技服务业组团

依托大亚湾科技创新园,在大亚湾大道与石化大道西 交汇的南侧区域,推动高校、科研院所、产业联盟、工程 中心等开展测试检测、中试和技术熟化等集成服务,打造 服务大亚湾新兴产业园的科技创新服务产业组团。

相符性分析:项目位于信息产业集聚区,主要从事电池组件和扣式电池的研发;催化剂性能优化;双氧水反应器的研发、先驱体转化陶瓷的工艺开发和微晶玻璃(产品开发,属于信息产业集聚区的8.科技服务组团。

因此,本项目的建设符合《大亚湾新兴产业园产业发展规划》的相关要求。

2、与《广东惠州环大亚湾新区发展总体规划修编》(2020-2035年)相符性分析人

发展目标:

到2025年,起步建设取得实质性进展,石化能源新材料万亿级产业条群、先进制造业及超大型数据中心集群初步成型: 2035年,起步区建设成熟完善,经济社会发展指标之到湾区领先水平,建成世界一流的绿色石化产业基本,粤港澳大湾区国际科技创新中心的重要战略平台、国内一流高品质湾区。新区形成高质量发展格局,"蓝色引擎"动力澎湃,海洋生态文明高度发达,各类资源要素便捷流动,形成国际化开放型创新体系。

同时根据《广东惠州环大亚湾新区发展总体规划修编》 (2020-2035年)附件三 环境影响篇章:未来环大亚湾新区 引入项目的环境影响评价应首先论证产业符合性:严格控 制高耗能、高耗水、高污染产业特别是水污染型行业的企 业入园,工业废水尽量回用;有生产废水的企业只允许引 入有预处理工序清洗废水产生的企业,不得引入化学制浆、 印染、鞣革、造纸、化工、电镀、电氧化、有色、冶炼、

THE THE STATE OF T

化工等水污染物排放量大以及排放重金属及有毒有害污染物的工业项目。禁止引进中的本项目不属于化学制浆、印染、鞣革、造纸、化工、电镀、电氧化、有色、冶炼、化工等水污染物排放量大以及排放重金属及有毒有害污染物的工业项目。

相符性分析:项目属于M7320工程和技术研究和试验发展,主要从事电池组件和扣式电池的研发;催化处性能优化;双氧水反应器的研发、先驱体转化陶瓷的本艺开发和微晶玻璃的产品开发,不属于工业企业。研发试验过程产生的实验室废液作为危废处理,不属于高耗能、高耗水、高污染产业,研发试验过程产生的发气(非甲烷总烃、颗粒物、甲醛、氟化物)经处理之际后排放;外排废水主要为生活污水和浓水,不含量金属及有毒有害物质。

因此,本项目的**没**符合《广东惠州环大亚湾新区发展总体规划修编》(2020-2035年)的相关要求。

1、"三线一单"管理要求极大性分析

表1-2 "三线一单"对照分析一览表

K	类别	内容	对照分析	符合性
	生态保护红线	生态保护红线和一般生态空间: 全市陆域生态保护红线面积2101.15平 方公里,占全市陆域国土面积的18.51%;一 般生态空间面积1335.10平方公里,占全市陆 域国土面积的11.76%。全市海洋生态保护红 线面积1400.90平方公里,约占全市管辖海域 面积的30.99%。	项目位于广东省惠州市大亚湾西区科技创新园科技路5号研发试验楼2栋,选址不涉及自然保护区、风景名胜区、饮用水源保护区、基本农田保护区及其它需要特殊保护的敏感区域,符合生态红线保护要求。	符合

其他符合性

— 5 —

水环境:根据《2023年大 亚湾经济技术开发区环境质量 状况公报》(惠州市生态环境 局大亚湾经济技术开发区分 局,二〇二四年五月),淡澳 河水质满足《地表水环境质量 标准》(GB3838-2002)中的 水环境质量持续改善。"十四五"省考断 IV 类水质标准,达到V类水体 面地表水质量达到或优于III类水体比例不 水质目标要求。项目生活污水 低于84.2%, 劣 V 类水体比例为0%, 城市 经三级化粪池预处理后和纯水 集中式饮用水水源达到或优于Ⅲ类比例稳 制备浓水一起接入市政污水管 定保持100%,镇级及以下集中式饮用水水 网纳入惠州市大亚湾第 源水质得到进一步保障; 近岸海域优良水质 净化厂处理,处理达标 比例完成省下达的任务。 环 淡澳河; 研发清洗废水产为实 境 验室废液收集后季 符 质 量 合 底 线 土壤环境:废气污染因子 为有机废气和颗粒物, 不涉 土壤环境质量稳中向好。土壤环 及重金属大气沉降,也不涉 到有效管控, 受污染耕地安 及地面漫流和垂直渗入;依 于93%,重点建设用地 托的危废间已进行防腐防渗 防泄漏处理,实验废水、实 验废液委外处理, 不会对土 壤环境产生影响。 本项目生产过程中所用的 水资源利用效率持续提高。到 2025 年, 资源主要为水、电资源,不属 全市民水总量控制在21.80亿立方米以内, 于高水耗、高能耗的产业。项 万金地区生产总值用水量较 2020 年降幅不 资 目建成后通过内部管理、设备 低了23%,万元工业增加值用水量较2020 选择、原辅材料的选用和管理、 符 年降幅不低于19%,农田灌溉水有效利用系 废物回收利用、污染治理等方 数不低于 0.535。 面采取合理可行的防治措施, 合 优化完善能源消费强度和总量双控。到 以"节能、降耗、减污"为目标, 2025年,全市单位地区生产总值能源消耗比 有效控制污染。项目的水、电 2020年下降14%,能源消费总量得到合理控 等资源利用不会突破区域的资 制。碳达峰工作严格按照省统一部署推进, 源利用上线。

确保2030年前实现碳达峰。

(1) 区域布局管控 要求:禁止新建、扩 建水泥、平板玻璃、 化学制浆、生皮制革 以及国家规划外的 钢铁、原油加工等项 聚力建设惠城高新 项目不属于禁止新扩建的项目 科技产业园、惠阳 类别。 (象岭) 智慧科技产 原旗原 业园、惠州新材料产 业园、博罗智能装备 产业园、龙门工业 园、大亚湾新兴产业 园、广东(仲恺)人 工智能产业园等7个 生态环境准入清单: 千亿级工业园区。 从区域布局管控、能 源资源利用、污染物 (2) 污染物排放管 排放管控和环境风 控:严格重金属重点 险防控等方面明确 行业企业准入管理, 生 新、改、扩建重点 上项目属于 M7320 工程和技术 准入要求,全市建立 态 业建设项目应 "1+3+80"生态环境 研究和试验发展,不涉及重金 环 "等量替代"原本。到 准入清单体系。"1" 属,不属于重点行业。 符 境 2025 年底/東点行业 企业基本之到国内 清洁、光进水平。 为全市总管控要求, 准 "3"为优先保护单 合 λ 元、重点管控单元、 清 一般管控单元3类管 **环境风险防** 单 控单元的管控要求, 控:强化土壤环境风 "80"为 54 个陆域环 境管控单元和,2000 险管控。实施农用地 分类管理,保障农产 海域环境管理单元 品质量安全。严格控 的管控要求 制在优先保护类耕 地集中区域新建涉 环境污染重点行业 企业、污水处理厂、 项目用地范围内均进行了硬底 垃圾填埋场、垃圾焚 化,三级化粪池、污水管网和 烧厂及污染处理处 危废间、实验室等设置防渗地 置设施等公用设施。 坪,不存在土壤污染途径。 强化建设用地风险 管控, 防范人居环境 风险。规范受污染建 设用地再开发。将土 壤环境质量情况作 为土地开发的前置 性评估条件, 经风险 评估对人体健康有 严重影响的被污染

场地,未经治理修复 或者治理修复不符 合相关标准的,不得 用于居民住宅、学 校、幼儿园、医院、 养老场所等项目开 发。 (4) 能源资源利用 要求: 加快推进绿色 矿山建设。持证在采 矿山应全部达到绿 色矿山建设标准, 达 项目属于 MZ 工程和技术 研究和试验 展, 不属于矿山 项目。 不到矿山建设标准 的,停工停产整顿; 新建矿山一律按照 绿色矿山标准建设; 推动矿山企业开展 规模化、集约化、集约化、集约化、集约化、集约化、

色化生产经营。							
表1-3 ZH44130320004惠州大亚 资 经济技术开发区(西区片区)重 控 第元 相关要求							
环境管控单元 编码	环境管控 管护 单元名称 类类	主要环境问题					
ZH44130320004	惠州 发发 发 人 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大 大	园区已形成产城融合发展形态,限制高污染工业项目建设。	符合性分析				
A CHIEF THE STATE OF THE STATE	医疗器械、高端装	异类】园区重点发展电子、汽车、备制造等新兴产业。 入园项目应符合现行有效的《产	1-1.项目属于 M7320 工程和 技术研究和试 验发展,不属 于产业/鼓励引				
区域布局管控		录》、《市场准入负面清单》等求以及园区产业定位。	导类项目。 1-2.项目属于 M7320工程和				
	1-3.【产业/禁止类】制革、纺织印染(包水排放量大的项目;容的产业类型导致	技术研究和试验发展,属于《产业结构调整指导目录(2024年本),中的鼓励类,					

	1-4.【土壤/限制类】重金属污染防控非重点区新建、改扩建重金属排放项目,应严格落实重金属总量替代与削减要求,严格控制重点行业发展规模。强化涉重金属污染行业建设项目环评审批管理,严格执行环保"三同时"制度。	不属于《市场 准入负面清单 (2022年版)》 其中禁止准许 类或特定条件 许可准入类的 负面清单范 围。
	With the American service of the ser	1-3.项320工程, 网7320工程, 技术之, 工程,不止, 工程,不止, 工程,不止, 工程,不止, 工程,不止, 工程,不止, 工程,不止, 工园为项属项目, 不止, 工园为项属, 和试属类 位技区创项兼 会别。
	利港技术 创新版形式版	1-4.项目不涉 及重金属排 放,不属于重 点行业,不是 点行业,限制类 项目。 综上,符合空域 域布局管控要
能療资源利用	2-1.【其他/综合类】有行业清洁生产标准的新引进项目清洁生产水平须达到本行业国内先进水平。	求。 项 目 属 于 M7320 工程和 技术研究和试验发展,没有 行业清洁生产 标准。符合能源资源利用要 求。
污染物排放管控	3-1.【其他/限制类】园区各项污染物排放总量不得突破规划环评核定的污染物排放总量管控要求。 3-2.【水/综合类】当地政府应尽快落实淡澳河流域	3-1.项目属于 M7320 工程和 技术研究和试 验发展,不会 突破《广东惠 州环大亚湾新 区发展总体规

水污染物削减措施,改善淡澳河水环境质量;园区 划修编》 内工业项目水污染物排放应实施减量替代。 (2020-2035 年) 附件三环 境影响篇章排 放总量控制要 求。 3-3. 【大气/限制类】强化 VOcs 的排放控制,排放 3-2.项目属于 VOCs 的重点行业的建设项目尽量不采用高挥发性 M7320 工程和 有机物原辅材料:新引进排放 VOCs 项目须实行双 技术研究和试 倍削减替代。 验发展,不属 于工业**、**目。 污水、烹州 市牧亚湾第一 水质净化厂处 3-4.【固废/综合类】产生、利用或处置固体废物 '理,实施减量 危险皮物)的入园企业在贮存、转移、利用 替代。 固体废物(含危险废物)过程中,应配套防护 **3-3.**项目 VOCs 排放实行倍量 替代, 总量由 惠州市生态环 境局大亚湾分 局分配。 3-4.项目贮存、 转移一般工业 固体废物过程 中, 配套三防 措施,项目贮 存、转移危险 废物过程中, 配套六防措 施。 综上,项目符 合污染物排放 管控要求。 4-1.【风险/鼓励引导类】生产、使用、储存危险化 4-1. 项目配套 学品或其他存在环境风险的入园项目应配套有效 建设风险防范 环境风险管控 的风险防范措施,并根据国家环境应急预案管理的 措施。项目符 要求编制环境风险应急预案, 防止因渗漏污染地下 合环境风险管 水、土壤,以及因事故废水直排污染地表水体。 控要求。 综上,本项目总体上能够符合《惠州市人民政府关于印发惠州市"三线-单"生态环境分区管控方案的通知》(惠府〔2021〕23号〕和《惠州市生态环

境局关于印发惠州市"三线一单"生态环境分区管控方案2023年度动态更新成

果的通知》(惠市环函[2024]265号)的管理要求。

2、产业政策相符性分析

本项目属于M7320工程和技术研究和试验发展,属于《产业结构调整指导目录(2024年本)》(中华人民共和国国家发展和改革委员会令第7号)第一类 鼓励类中"三十一、科技服务业—10.科技创新平台建设",属于鼓励类,本项目的建设与国家的相关产业政策要求相符。

3、市场准入负面清单相符性分析

本项目属于 M7320 工程和技术研究和试验发展,不属于《市场准入负面清单(2022 年版)》(发改体改规〔2022〕397 号)及其中与市场准入相关的禁止性规定,本项目不属于其中禁止准许类或特定条件许多准入类的负面清单范围。

4、选址合理性分析

本项目位于广东省惠州市大亚湾西区科技团新园科技路 5 号研发试验楼 2 栋,根据《惠州市大亚湾上杨片区控制《详细规划》(见附图 11),项目用地属于商务设施用地,不属于耕地、《久农田保护区;根据孵化楼房产证:粤房地权证(惠州)字第 330012 24 号,规划用途为孵化楼,本项目属于实验室项目,符合用地要求。

因此,项目选址等所在区域土地利用规划,项目建设符合惠州市相关规划。

5、与环境功能区划相符性分析

- ◆ ★ 《惠州市饮用水源保护区划调整方案》(2014年版本)、《广东省人民政府关于调整惠州市部分饮用水水源保护区的批复》(粤府函[2019]270 、惠州市人民政府关于《惠州市乡镇级及以下集中式饮用水水源保护区划定(调整)方案》的批复(惠府函〔2020〕317号),本项目不属于饮用水源保护区范围。
- ◆项目纳污水体为淡澳河,根据《关于同意实施广东省地表水环境功能区划的批复》(粤府函[2011]29号)可知,该批复未对淡澳河的地表水环境功能区划进行划分,为此参照《惠州大亚湾经济技术开发区生态环境保护"十四五"

规划》(惠湾管函[2022]19号)中对淡澳河、响水河的规定,淡澳河、响水河属于 V 类水体,执行《地表水环境质量标准》(GB3838-2002)中 V 类标准。

- ◆根据《惠州市环境空气质量功能区划(2024 年修订)》,项目所在区域为环境空气质量二类功能区,不属于环境空气质量一类功能区。
- ◆根据惠州市生态环境局关于印发《惠州市声环境功能区划分方案(2022年)》的通知(惠市环〔2022〕33号),项目所在区域为声环境2类区,不属于声环境1类区。

在落实好废气、固废、噪声及生活污水处理措施,能够得到有**必**对处理达 **小** 标排放后,符合功能区划条件,本项目选址不与环境功能区相冲突,选址合理。

6、水污染防治相关政策相符性分析

(1) 与《广东省水污染防治条例》的相符性分析

《广东省水污染防治条例》(2021年1月1日流行)相关规定:

第四十条 饮用水水源保护区分为一级保护区和二级保护区;必要时,可以在饮用水水源保护区外围划定一定的人或作为准保护区。

第四十四条 禁止在饮用水水源、级保护区内新建、改建、扩建与供水设施和保护水源无关的建设项目、建建成的与供水设施和保护水源无关的建设项目由县级以上人民政府责义除或者关闭。

禁止在饮用水水源,级保护区内新建、改建、扩建排放污染物的建设项目;已建成的排放污染的建设项目由县级以上人民政府责令拆除或者关闭;不排放污染物的建设项目,除与供水设施和保护水源有关的外,应当尽量避让饮用水水源,保护区;经组织论证确实无法避让的,应当依法严格审批。经依法批准的建设项目,应当严格落实工程设计方案,并根据项目类型和环境风险防癌等,提高施工和运营期间的环境风险防控、突发环境事件应急处置等各项措施的等级。有关主管部门应当加强对建设项目施工、运营期间环境风险预警和防控工作的监督和指导。

第四十九条 禁止在江河、湖泊、运河、渠道、水库最高水位线以下的滩 地和岸坡堆放、存贮固体废物和其他污染物。

禁止在东江干流和一级支流两岸最高水位线水平外延五百米范围内新建

废弃物堆放场和处理场。

已有的堆放场和处理场应当采取有效的防治污染措施,危及水体水质安全的,由县级以上人民政府责令限期搬迁。

第五十条 新建、改建、扩建的项目应当符合国家产业政策规定。

在东江流域内,除国家产业政策规定的禁止项目外,还禁止新建农药、铬盐、钛白粉生产项目,禁止新建稀土分离、炼础、炼皱、纸浆制造、氰化法提炼产品、开采和冶炼放射性矿产及其他严重污染水环境的项目;严格控制新建造纸、制革、味精、电镀、漂染、印染、炼油、发酵酿造、非放射性、产冶炼以及使用含汞、砷、镉、铬、铅为原料的项目。禁止在东江水系岸边和水上拆船。

相符性分析:项目属于M7320工程和技术研究和式验发展,不属于以上禁止和严格控制的项目,不在饮用水源保护区范围、因此,项目建设符合《广东省水污染防治条例》要求。

(2)项目与《关于印发<惠州市2024年水污染防治工作方案>的通知(惠市环[2024]9号)》的相符性分析、

根据《惠州市2024年水污染》治工作方案》:

(六)强力推进工业之外治理。严格执行产业结构调整指导目录,落实生态环境分区管控要求。 法通过建设项目环评限批、污染物减量置换等方式严格建设项目管理, 进工业转型升级。组织开展汛期城镇污水处理厂纳污范围内工业污染专项整治,按照"双随机、一公开"原则对城镇污水处理厂纳污范围内的 企业、工业企业开展联合监督检查,严历查处偷排、漏排、超标排放废水等违法行为,建立健全上下游、左右岸跨地市或跨区域联合执法机制。 工业和信息化局、生态环境局、商务局按职责分工负责)。

相符性分析: 研发清洗废水作为实验室废液收集后委托有处理资质的单位处理; 生活污水经三级化粪池预处理后和纯水制备浓水一起接入市政污水管网纳入惠州市大亚湾第一水质净化厂处理, 处理达标后排入淡澳河。因此本项目符合《惠州市 2024 年水污染防治工作方案》的相关要求。

7、大气污染防治相关政策相符性分析

(1) 与《广东省大气污染防治条例》相符性分析

第四章工业污染防治第二节挥发性有机物污染防治:在本省生产、销售、使用含挥发性有机物的原材料和产品的,其挥发性有机物含量应当符合本省规定的限值标准。高挥发性有机物含量的产品,应当在包装或者说明中标注挥发性有机物含量。企业事业单位和其他生产经营者应当按照挥发性有机物排放标准、技术规范的规定,制定操作规程,组织生产管理。

第二十六条新建、改建、扩建排放挥发性有机物的建设项目,应当使用污染防治先进可行技术。

相符性分析:本项目属于 M7320 工程和技术研究和试验发展,项目使用的原辅料均属于低 VOCs 原辅材料。实验室废气收集后采集一套"喷淋塔+二级活性炭吸附"装置处理后经 26m 高的排气筒 DA001 高光排放,对周围环境影响不大,本项目有机废气治理措施采用"喷淋塔、级活性炭吸附装置"是可行的。

综上所述,项目的废气污染防治技术行。因此本项目与《广东省大气污染防治条例》相符。

(2)与《惠州市 2023 年太气污染防治工作方案》相符性分析

加强低 VOCs 含量原建的料应用。应用涂装工艺的工业企业应当使用低挥发性有机物含量的涂料,并建立保存期限不少于 3 年的台账,记录生产原料、辅料的使用量、发生、去向以及 VOCs 含量。新建、改建、扩建的出版物印刷类项目全面使用低 VOCs 含量的油墨皮鞋制造、家具制造业类项目基本使用低 VOCs 量胶粘剂。房屋建筑和市政工程全面便用低 VOCs 含量涂料和胶粘剂,除特殊功能要求外的室内地坪施工、室外构筑物防护和城市道路交通标志本使用低 VOCs 含量涂料。

新、改、扩建项目限制使用光催化、光氧化、水喷淋(吸收可溶性 VOCs 除外)、低温等离子等低效 VOCs 治理设施(恶臭处理除外)。加大对上述低效 VOCs 治理设施及其组合技术的排查整治,督促达不到治理要求的低效治理设施更换或升级改造, 2023 年底前, 完成 49 家低效 VOCs 治理设施改造升级。

相符性分析: 本项目属于 M7320 工程和技术研究和试验发展,项目使用

的原辅料均属于低 VOCs 原辅材料。实验室废气收集后采用一套"喷淋塔+二级活性炭吸附"装置处理后经 26m 高的排气筒 DA001 高空排放,对周围环境影响不大。所以本项目与《惠州市 2023 年大气污染防治工作方案》相符合。

(3)与《惠州市工业和信息化局惠州市生态环境局惠州市市场监督管理局关于印发<惠州市推进工业企业低挥发性有机物原辅材料替代工作方案>的通知》(惠市工信[2021]228号)的相符性分析

按照"分类处置,应替尽替"的原则,通过"示范引领,执法倒逼"等方式,推动工业涂装、家具喷涂、包装印刷等重点行业低 VOCs 含量液头替代,采用符合国家有关低 VOCs 含量产品规定的涂料、油墨、胶粘剂、切削液、润滑液等,或使用的原辅材 VOCs 含量(质量比)均低于 10%。工序。工业涂装行业根据《涂料中挥发性有机物限量》中 VOCs 含量限度,求,重点加快使用粉末、水性、高固体分、辐射固化等低 VOCs 含量放涂料替代溶剂型涂料;包装印刷行业重点推广使用植物油基油墨、辐射量化油墨、低醇润版液等低 VOCs 含量原辅材料,重点推进塑料软包装印刷、印铁制罐等企业的替代任务。大力推进企业低挥发性有机物源头替代表等,从源头上减少挥发性有机物排放。

(4) 与《广东省人民政府办公厅源于印发<广东省2023年大气污染防治 2作方案的通知>》(粤办函[2023]50号)

4.推进重点工业领域深度治理。

持续推进超低排放改造工作。加快推动短流程钢铁行业超低排放改造,强化已完成超低排放改造的长流程钢铁企业监管。全面开展水泥行业、钢压延加工行业超低排放改造,明确水泥行业超低排放改造要求,各地级以上市要组织水泥(熟料)制造企业、独立粉磨站及钢压延加工企业制定改造路线图和时间

表,形成全市改造计划于2023年6月底前报省生态环境厅。(省生态环境厅牵头,省发展改革委、工业和信息化厅等按职责分工负责)

推动现有垃圾焚烧发电厂、玻璃行业和砖瓦行业实施深度治理。鼓励垃圾焚烧发电厂按照氮氧化物(NOx)小时和日均排放浓度分别不高于120毫克/立方米(mg/m)和100mg/m³,玻璃企业按照NOx排放浓度小时均值不高于200mg/m³的限值开展深度治理。深度治理完成后明显稳定优于国家和省排放限值要求的,可以申请中央、省大气污染防治资金支持,2023年6月底前各地级发土市要将改造计划上报至省生态环境厅。全省35蒸吨/小时(t/h)以上燃煤锅产和自备电厂要稳定达到超低排放要求,燃气锅炉按标准有序执行特别排放限值。参照国内最严标准,对重点排污单位实施协商减排,其中尚未减产减排潜力的企业应在2023年4月底前确定。(省生态环境厅牵头,省工工工厂信息化厅、住房城乡建设厅、市场监管局、能源局等按职责分工负责工厂。

加强低VOCs含量原辅材料应用。应用为表工艺的工业企业应当使用低VOCs含量的涂料,并建立保存期限不得。于三年的台账,记录生产原辅材料的使用量、废弃量、去向以及VOC。量。新改扩建的出版物印刷类项目全面使用低VOCs含量的油墨。皮勒处造、家具制造类项目基本使用低VOCs含量的胶粘剂。房屋建筑和市政工程全面使用低VOCs含量的涂料和胶粘剂,室内地坪施工、室外构筑物的和城市道路交通标志(特殊功能要求的除外)基本使用低VOCs含量的涂料。(省工业和信息化厅、生态环境厅、住房城乡建设厅、市场监管局等按职责分工负责)

全成 展涉VOCs储罐排查整治。各地要按照国家石油炼制、石油化学、合成树脂、制药等现行污染物排放标准,全面开展涉VOCs储罐排查,建立储整治清单,制定整治方案,2023年底前基本完成整治,确需一定整改周期的,最迟在下次检维修期间完成整改。(省生态环境厅负责)

加快完成已发现涉VOCs问题整治。加强对石油化工企业和储油库的受控储罐附件泄漏、罐车油气回收管线泄漏浓度超标、储罐无废气收集和治理措施、泄漏检测与修复(LDAR)未按规定实施以及加油站油气回收系统运行不正常、设备与管线组件油气泄漏等突出问题排查整治。2023年底前,广州、深圳、珠

海、佛山、梅州、惠州、东莞、中山、江门、湛江、茂名、肇庆、清远、揭阳等14市基本完成对中海油惠州石化有限公司、中国石油化工股份有限公司茂名分公司(炼油部分)等省生态环境厅明确的重点企业涉VOCs问题整治工作,并举一反三查找整治本地其他企业相关问题,确需一定整改周期的,最迟在相关设备下次停车(工)大修期间完成整改。(省生态环境厅牵头,省应急管理厅、市场监管局等按职责分工负责)

强化重点污染源监测监管。在石化、化工、工业涂装、包装印刷、家具、电子等涉VOCs的重点工业园区和工业聚集区增设空气质量自动监测站点,2023年底前开展站点建设的前期筹备工作。督促石化企业严格按照规定开展LDAR工作并对实施情况进行审核评估。提升LDAR质量、信息化管理水平,2023年底前,广州、珠海、惠州、东莞、茂名、湛江、揭阳等7市要建成市级LDAR信息管理平台,并与省相关管理平台联制,推动年销售汽油量大于(含)2000吨的加油站安装油气回收自动监控设施并与生态环境部门联网。(省生态环境厅牵头,省应急管理厅、市场监查与等按职责分工负责)

相符性分析:本项目为新建实验项目,不属于水泥、钢压延加工行业,不属于垃圾焚烧发电厂、玻璃处和砖瓦行业,不涉及VOCs储罐。项目不属于应用涂装工艺的工业企业,不属于皮鞋制造、家具制造类项目,不属于房屋建筑和市政工程。因此,项目符合《广东省人民政府办公厅源于印发<广东省2023年大气污染风工作方案的通知>》(粤办函[2023]50号)的相关要求。

(5) 与《广东省人民政府关于印发广东省空气质量持续改善行动方案的通知》 (6) 府[2024]85号)

四)严格新建项目准入。坚决遏制高耗能、高排放、低水平项目盲目上 加快推进生态环境分区管控成果在"两高一低"行业产业布局和结构调整、 重大项目选址中的应用。新改扩建项目严格落实国家产业规划、产业政策、生 态环境分区管控方案、规划环评、项目环评、节能审查、产能置换、重点污染 物总量控制、污染物排放区域削减、碳排放达峰目标等相关要求,原则上采用 清洁运输方式。新建、扩建石化、化工、焦化、有色金属冶炼、平板玻璃项目 应布设在依法合规设立并经规划环评的产业园区。新建高耗能项目达到高耗能 行业重点领域能效标杆水平。重点区域(清远市除外)建设项目实施VOCs两倍削减量替代和NOx等量替代,其他区域建设项目原则上实施VOCs和NOx等量替代。

- (五)升级改造现有产能。推动减污降碳协同增效,加快工业领域全流程绿色发展。以钢铁、水泥、电解铝、平板玻璃等行业为重点,对能耗、环保、安全、质量、技术达不到标准以及淘汰类、限制类产能排查建档,逐年细化并落实产能淘汰任务。全面开展清洁生产审核和评价认证,以建材、化工、石化、有色、工业涂装、包装印刷等行业为重点,加快推进现代化工厂建筑实现行业绿色低碳发展。开展重点行业、工业园区和企业集群整体清洁生产审核模式试点。
- (八)发展清洁低碳能源。到2025年,非化石能感消费比重力争达到30% 左右,电能占终端能源消费比重达40%左右。完美然气管网运营机制,年用 气量1000万立方米以上、靠近主干管道且具备的接下载条件的工商业用户可实 施直供。新增天然气优先保障居民生活。企业锅炉和炉窑清洁能源替代以及运 输车船使用。工业锅炉和炉窑"煤改造"要在落实供气合同的条件下有序推进。
- (九) 合理控制煤炭消费。推进现有煤电机组节能降耗。原则上不再新增自备燃煤机组,鼓励自备之厂转为公用电厂。珠三角地区逐步扩大III类(严格)高污染燃料禁燃品,粤东粤西粤北地区III类禁燃区扩大到县级及以上城市建成区。对交通电力稳定供应、电网安全运行、清洁能源大规模并网消纳的煤电项目及其用煤量应予以合理保障。

(本) 压减工业用煤。在保证电力、热力供应等前提下,推进30万千瓦及以上热电联产机组供热半径15公里范围内的生物质锅炉(含气化炉)、未完成低排放改造的燃煤小热电机组(含自备电低排放改造的燃煤小热电机组(含自备电厂)关停整合。珠三角地区原则上不再新建燃煤锅炉;粤东粤西粤北地区县级及以上城市建成区和天然气管网覆盖范围内禁止新建35蒸吨/小时及以下燃煤锅炉。到2025年,基本淘汰县级及以上城市建成区内35蒸吨/小时以下燃煤锅炉及经营性炉灶、储粮烘干设备、农产品加工等燃煤设施。

重点区域新、改、扩建熔化炉、加热炉、热处理炉、干燥炉采用清洁能源,

原则上不使用煤炭、生物质等燃料。推动全省玻璃、铝压延、钢压延行业清洁能源替代。逐步淘汰固定床间歇式煤气发生炉。

(十六)有序开展重点行业超低排放改造。到2025年,全省钢铁企业基本完成超低排放改造,可视超低排放改造完成情况实行粗钢产量调控。推动现有水泥熟料生产企业(不含矿山)和独立粉磨站等实施超低排放改造,对于达到超低排放改造要求的企业实施减少错峰生产时间等正向激励政策,新建(含搬迁)水泥熟料生产企业(不含矿山)和独立粉磨站等要按照超低排放要求建设。对达到国家超低排放改造要求,且符合《重污染天气重点行业应急减减措施制定技术指南(2020年修订版)》及其补充说明的A级和引领性企业条件的,经地级以上市评估后,可认定为环保绩效A级企业。

(十七)推进工业锅炉和炉窑提标改造。按国家要,开展低效失效污染治理设施排查,通过清洁能源替代、升级改造、整定包出等方式实施分类处置。推动燃气锅炉实施低氮燃烧改造。推动现有处企业自备电厂(站)全面实现超低排放。积极引导生物质锅炉(含电力、发展超低排放改造,鼓励有条件的地市淘汰生物质锅炉。生物质锅炉采放、用锅炉,配置布袋等高效除尘设施,禁止掺烧煤炭、煤矸石、垃圾、发产板和漆板(或含有胶水、油漆、有机涂层等的木材)、工业固体废物等其他物料。工业固体废物、生活垃圾等应按照固体废物污染防治相关法律发规、标准及技术规范处理处置,禁止随意将其制成燃料棒、气化或直长为燃料在工业锅炉、工业炉窑、发电机组等设备中燃烧。

(十八)全面实施低(无)VOCs含量原辅材料源头替代。全面推广使用低(无)VOCs含量原辅材料,实施源头替代工程,加大工业涂装、包装印刷和电子行业低(无)VOCs含量原辅材料替代力度,加大室外构筑物防护和城省路交通标志低(无)VOCs含量涂料推广使用力度。

(十九)实施重点领域深度治理。开展挥发性有机液体储罐专项整治,鼓励储罐使用低泄漏的呼吸阀、紧急泄压阀,定期开展密封性检测。汽车罐车推广使用密封式快速接头。以珠三角地区石化基地以及揭阳大南海石化基地、湛江东海岛石化基地、茂名石化基地为重点,加快推进储存汽油、航空煤油、石脑油以及苯、甲苯、二甲苯的内浮顶罐使用全液面接触式浮盘或开展内浮顶罐

废气收集治理,未落实上述要求的石化企业要制定整改计划,确需一定整改周期的,最迟在下次检维修期间完成整改。污水处理场(站)排放的高浓度有机废气要单独收集处理;含VOCs有机废水储罐、装置区集水井(池)排放的有机废气要密闭收集处理。各地级以上市应定期开展企业泄漏检测与修复(LDAR)工作实施情况审核评估。到2024年,广州、珠海、惠州、东莞、茂名、湛江、揭阳7市完成市级LDAR信息管理模块建设,并与省级LDAR综合管理等子系统联网。各地级以上市要每年组织开展一轮储油库、油罐车、油油站油气回收专项检查和整改工作。

完善基于环境绩效的涉VOCs企业分级管控,定期动态更新处级管控清单。 重点涉气企业逐步取消烟气和含VOCs废气旁路,因安全失效需要无法取消的, 应安装在线监控系统及备用处置设施。按照国家和省本产要求组织实施低效失 效VOCs治理设施排查整治。加强非正常工况废产,放控制。企业开停工、检 维修期间,按照要求及时收集处理退料、清洗之吹扫等作业产生的VOCs废气。 企业不得将火炬燃烧装置作为日常大气,深处理设施。

相符性分析:本项目为新建实验项目,不属于新建、扩建石化等高耗能项目,不属于需要升级改造的。流行业,实施VOCs倍量替代。项目不涉及工业锅炉和炉窑的使用,不是大然气、煤炭等的使用。项目使用的原辅料均属于低VOCs原辅材料。以此,项目符合《广东省人民政府关于印发广东省空气质量持续改善行动。案的通知》(粤府[2024]85号)的相关要求。

7、其他相关政策相符性分析

(東市环[2024]9号)相符性分析

《惠州市2024年土壤与地下水污染防治工作方案》:

二、系统推进土壤污染源头防控

(一)加强涉重金属行业污染防控。进一步开展涉镉等重点行业企业污染源排查,根据排查情况,将需要整治的企业列入整治清单,督促企业制定整改方案,落实整改措施。持续督促纳入大气环境重点排污单位名录的涉镉等重金属排放企业按排污许可证规定实现大气污染物中的颗粒物自动监测、监控设备

联网。(市生态环境局负责,各县、区人民政府,大亚湾开发区、仲恺高新区管委会配合落实。以下均需各县、区人民政府,大亚湾开发区仲恺高新区管委会配合落实,不再列出)

(二)严格监管土壤污染重点监管单位。依规公布我市土壤污染重点监管单位名录,督促重点监管单位落实法定义务。2024年年底前,新纳入的重点监管单位应完成隐患排查,所有重点监管单位完成年度土壤和地下水自行监测。对排查或监测发现数据异常、存在污染隐患的,指导督促企业因地制宜采取有效管控措施,防止污染扩散。按要求组织开展惠州忠信化工有限公司家色化改造工程专项评估,总结项目技术方案、组织模式、监督管理等方面的典型经验,于2024年底前将项目实施成效报省生态环境厅。(市生态环境局负责)

五、有序推进地下水污染防治

- (二)加快推进地下水污染防治重点区划定。加快推进重点区划定工作并印发划定方案,划定成果大的月底前报省生态环境厅。(市生态环境局牵头,市自然资源局、水利局等参与)
- (三)加强地方水污染源头防控和风险管控。持续推进重点污染源地下水环境状况调查 完成9个"双源"地块和11个危险废物处置场地下水环境状况初步调查 海调查类项目成果集成与应用,督促相关责任主体落实地下水污染防治法定义务。(市生态环境局牵头,市自然资源局、水利局、城管执法局、体容环境卫生事务中心等参与)组织生活垃圾填埋场运营管理单位开展防渗衬层完整性检测、地下水自行监测,并对发现的问题进行核实整改。当防渗衬层系统发生渗漏时,应及时采取补救措施。(市城管执法局负责,市市容环境卫生事务中心参与)加强生活垃圾填埋场地下水水质的监督性监测。(市生态环境局负责)

(四)加强地下水污染防治重点排污单位管理。公布地下水污染防治重点

排污单位名录,督促责任主体落实地下水污染防治法定义务。督促指导已公布的地下水污染防治重点排污单位参照《重点监管单位土壤污染隐患排查指南(试行)》《地下水污染源防渗技术指南(试行)》等要求,于12月底前完成地下水污染渗漏排查,对存在问题设施,采取污染防渗改造措施。组织开展重点排污单位周边地下水环境监测。(市生态环境局牵头,市应急管理局等参与)

(五)加强地下水型饮用水水源补给区保护。针对龙门县龙潭镇左潭地下水饮用水水源保护区开展补给区划定,加强补给区地下水环境管理。(本生态环境局牵头,市自然资源局、水利局等参与)

相符性分析:项目不属于纳入大气环境重点排污单位名录的涉镉等重金属排放企业,不属于土壤污染重点监管单位。项目没有地下、污染途径,不属于地下水污染防治重点排污单位,不位于地下水饮用水流,给区。项目符合关于印发《惠州市2024年土壤与地下水污染防治工作、人的通知》(惠市环[2024]9号)的要求。

(2) 与《广东省生态环境厅关于所》广东省生态环境保护"十四五"规划的通知》(粤环〔2021〕10号)、杨相符性分析

根据《广东省生态环境保长十四五"规划》的要求:

.....

建立完善生态环境》区管控体系:推动工业项目入园集聚发展,引导重大产业向沿海等环境。量充足地区布局,新建化学制浆、电镀、印染、鞣革等项目入园集中管理。深入实施重点污染物总量控制,优化总量分配和调控机制,重点污染,排放总量指标优先向重大发展平台、重点建设项目、重点工业园区、战略性产业集群倾斜,超过重点污染物排放总量控制指标或未完成环境质量改量标的区域,新改扩建项目重点污染物实施减量替代。

....

大力推进挥发性有机物(VOCs)源头控制和重点行业深度治理: 开展原油、成品油、有机化学品等涉VOCs物质储罐排查,深化重点行业VOCs排放基数调查,系统掌握工业源VOCs产生、处理、排放及分布情况,分类建立台账,实施VOCs精细化管理。在石化、化工、包装印刷、工业涂装等重点行业建立

完善源头、过程和末端的VOCs全过程控制体系。大力推进低VOCs含量原辅材料源头替代,严格落实国家和地方产品VOCs含量限值质量标准,禁止建设生产和使用高VOCs含量的溶剂型涂料、油墨、胶粘剂等项目。严格实施VOCs排放企业分级管控,全面推进涉VOCs排放企业深度治理。开展中小型企业废气收集和治理设施建设、运行情况的评估,强化对企业涉VOCs生产车间/工序废气的收集管理,推动企业开展治理设施升级改造。推进工业园区、企业集群因地制宜统筹规划建设一批集中喷涂中心(共性工厂)、活性炭集中再生产心,实现VOCs集中高效处理。开展无组织排放源排查,加强含VOCs物料全方位、全链条、全环节密闭管理,深入推进泄漏检测与修复(LDAR)工作。

....

深入推进水污染减排:加强农副产品加工、印染、产工等重点行业综合整治,持续推进清洁化改造。推进高耗水行业实施废水深度处理回用,强化工业园区工业废水和生活污水分质分类处理,推进分级以上工业园区"污水零直排区"创建。

.

强化土壤污染源头管控: 续发土壤、地下水等环境风险状况,合理确定区域功能定位、空间布局和建设项目选址,严禁在优先保护类耕地集中区、敏感区周边新建、扩建排放复金属污染物和持久性有机污染物的建设项目。

• • • • • •

相符性分析: 项目属于M7320工程和技术研究和试验发展。

研发清洗废水作为实验室废液收集后委托有处理资质的单位处理;生活污水经三级化粪池预处理后和纯水制备浓水一起接入市政污水管网纳入惠州市 大亚湾第一水质净化厂处理,处理达标后排入淡澳河。

项目不属于土壤污染重点监管单位,不属于地下水污染防治重点排污单位。一般工业固体废物在厂内采用库房或包装工具贮存,贮存过程应满足相应防渗漏、防雨淋、防扬尘等环境保护要求、危险废物储存场所的设置满足《危险废物贮存污染控制标准》(GB18597—2023)、《危险废物识别标志设置技

术规范》(HJ1276-2022)的相关要求。

因此,项目符合《广东省生态环境保护"十四五"规划》的要求。

- (3) 与《广东省臭氧污染物防治(氮氧化物和挥发性有机物协同减排) 实施方案(2023-2025年)》相符性分析
 - 10. 其他涉VOCs排放行业控制

工作目标:以工业涂装、橡胶塑料制品等行业为重点,开展涉VOCs企业 达标治理,强化源头、无组织、末端全流程治理。

工作要求: 加快推进工程机械、钢结构、船舶制造等行业低VAS含量原辅材料替代,引导生产和使用企业供应和使用符合国家质量标准产品;企业无组织排放控制措施及相关限值应符合《挥发性有机物子和织排放控制标准(GB37822)》、《固定污染源挥发性有机物排放综合标准(DB44/2367)》和《广东省生态环境厅关于实施厂区内挥发性有效为无组织排放监控要求的通告》(粤环发(2021)4号)要求,无法实现从VOCs原辅材料替代的工序,宜在密闭设备、密闭空间作业或安装二次系列设施;新、改、扩建项目限制使用光催化、光氧化、水喷淋(吸收可添加VOCs除外)、低温等离子等低效VOCs治理设施(恶臭处理除外),从实排查光催化、光氧化、水喷淋、低温等离子及上述组合技术的低效Vocs治理设施,对无法稳定达标的实施更换或升级改造。

12. 涉VOC 编補材料生产使用

工作目标、加大VOCs原辅材料质量达标监管力度。

工作文: 严格执行涂料、油墨、胶粘剂、清洗剂VOCs含量限值标准;依法查处生产、销售VOCs含量不符合质量标准或者要求的原材料和产品的行物,增加对使用环节的检测与监管,曝光不合格产品并追溯其生产、销售、使用企业,依法追究责任。

相符性分析:项目不涉及高VOCs含量原辅材料的使用。项目实验室废气收集后采用一套"喷淋塔+二级活性炭吸附"装置处理后经26m高的排气筒 DA001高空排放,同时全面加强VOCs无组织排放控制。废气经收集处理后,颗粒物、非甲烷总烃、二甲苯、氟化物厂界无组织排放可以达到《大气污染物

排放限值》(DB44/27-2001)第二时段无组织排放监控点浓度限值;甲醛厂界 无组织可以达到《固定污染源挥发性有机物综合排放标准》(DB44/2367-2022) 表4企业边界VOCs无组织排放限值;非甲烷总烃厂区内可以达到《固定污染源 挥发性有机物综合排放标准》(DB44/2367-2022)表3厂区内VOCs无组织排放 限值; 臭气浓度厂界可以达到《恶臭污染物排放标准》(GB14554-93)表1二 级标准新扩改建限值。因此,本项目符合《广东省臭氧污染物防治(氮氧化生和挥发性有机物协同减排)实施方案(2023-2025年)》的相关要求。 级标准新扩改建限值。因此,本项目符合《广东省臭氧污染物防治(氮氧化物

— 25 —

二、建设项目工程分析

1、项目背景

为认真贯彻落实省委"1310"具体部署,积极参与粤港澳大湾区高水平人才高地建设,推动惠州与香港科技创新交流合作落到实处,加快打造广东高质量发展新增长极,香港理工大学与大亚湾经济技术开发区共建研究院,成立港理大(惠州)大亚湾技术创新研究院有限公司,发挥各自优势并协同发展,深化惠港合作将科研成果转化,作为当地产业发展的核心技术。研究院将成为推动亳州科技产业发展的动力,实现双方互利共赢。

2、项目概况

港理大(惠州)大亚湾龙龙创新研究院有限公司实验室项目租用科技创新园孵化楼 B 栋 1-6 层,占龙面积 735.45m²,建筑面积 4972.72m²,主要包括四个研究中心,分别为新龙龙与新能源研究中心、绿色与智能制造研究中心、绿色化学与可持续催化研究中心和空间计算与影像研究中心。其中新材料与新能源研究中心、绿色、静能制造研究中心、绿色化学与可持续催化研究中心分别从事电池组件和起式电池的研发;催化剂性能优化;双氧水反应器的研发、先驱体转化陶瓷色、艺开发和微晶玻璃的产品开发;空间计算与影像研究中心主要从事光学系统的软件和硬件开发。项目总投资为 15000 万元,其中环保投资 120 万元。研究人员 50 人,年研发 230 天,每天研发 8 小时。

3、工程组成

项目占地面积 735.45m², 总建筑面积 4972.72m², 建筑物详细参数详见表 2-1。 根据总平面布局, 项目主要包括一层的接待厅、展厅、危废间、气瓶储存仓(戊 类)、空间计算与影像研究中心的智能照明实验室和测量标定实验室(暗房);二层的办公区、绿色与智能制造研究中心的玻璃和陶瓷实验室、新材料与新能源研究中心的电池实验室和电池测试室、绿色化学与可持续催化研究中心的化学实验室;三层的办公区、空间计算与影像研究中心的物理实验室和标定实验室(暗房)、会议室;四层的绿色与智能制造研究中心,包括办公区、光机电与自动化实验室、材料实验室、化学实验室;五层的新材料与新能源研究中心,包括办公区、2个产品及物料存储间、2个薄膜工艺间、1个电池工艺间;六层的绿色化学与可持续催化研究中心,包括办公区、6个储物室、2个实验室、1个成室、1个表征室和1个煅烧室。具体的项目组成内容见下表 2-2,车间平面布置图见附图 3。

表 2-1 项目建(构)筑物参数天龙表

建筑物名称	尺寸	层数	SY"	备注
2 栋 (B 栋)	39m×21.3m	6	える と と と に に に に に に に に に に に に に	建筑总高为 23.7m
	表 2-2	项目工程		
		7///		

	表 2-2 则目 发短机表						
序号		工程组成		工程内容			
		实验室(1F)	空间计算影像研究中心	测量标定实验室(暗房),面积约 83m ² 智能照明实验室,面积约 101m ²			
		•	一人 材料与新能源研究中心	电池实验室 2 间,总面积约 152m²			
		实验室		电池测试室,面积约 30m² 玻璃和陶瓷实验室 2 间,总面积约			
			绿色与智能制造研究中心	134m ²			
	*	M)	绿色化学与可持续催化研 究中心	化学实验室,面积约 141m²			
	主义	安 实验室(3F)	空间计算与影像研究中心	物理实验室,面积约 132m²			
1	X	大孤王(JI)	工門口昇一彩像別几十七	标定实验室(暗房),面积约 190m²			
<u>*</u>	程			材料实验室,面积约 97m²			
-3(0)		 实验室(4F)	绿色与智能制造研究中心	化学实验室,面积约 141m²			
			. —	光机电与自动化实验室,面积约 190m²			
		实验室(5F)	新材料与新能源研究中心	薄膜工艺间 2 间,总面积约 287m ²			
		<u> </u>	が147 44 →J が1日E4なり1 プレ ヤー	电池工艺间,面积约 101m²			
			<i>「</i> クルツト式社社界ルカ	实验室 2 间,总面积约 168m²			
		实验室(6F)	绿色化学与可持续催化研 究中心	合成室,面积约 71m ²			
			76 10	表征室,面积约 66m²			

					煅烧室,面积约 38m²
				展示厅	面积约 159m²
				接待厅	面积约 63.6m²
			1F	消防控制室	面积约 26m²
				空气压缩机房	面积约 15m²
			2F	办公区	面积约 38.4m²
		<i>t-</i> 4-		资料室	面积约 4.7m ²
		辅助		办公区	面积约 38.4m²
	2	工	3F	资料室	面积约 4.7m²
		程		会议室	面积约 141㎡
			4F	办公区	面积约70.1462
			41	资料室	面和 4.7m²
			Z.F.	办公区	契约 25m ²
			5F	资料室	面积约 4.7m²
				办公区	面积约 38.4m²
			6F	资料室	面积约 4.7m²
			存储间(5F)	2,0	总面积 139m²
		储	储物室(6F)	由市政项目的电力	总面积 91m²
	3	运 工 程	危废暂存间		三 面积 19m²
	_		(1F)		叫尔 19m-
			气瓶储存仓		面积 18m²
		.,	(戊类)(1F) 供水	上京 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
		公用	供电	大	
	4	工	供电	÷	由市政供电线网提供 i水就近排入雨水管网;
		程	排水人	1	八
			X.y		2预处理后,接入市政污水管网纳入
			`Ch.		2厂处理,处理达标后排入淡澳河。
		1	发 水处理设		〈管网,纳入惠州市大亚湾第一水质
			施施		运标后尾水排入淡澳河。 医液收集后委托有处理资质的单位处
	A	/ 开]		,	理。
	****	保工	废气处理设	项目实验室废气收集后采用	用一套"喷淋塔+二级活性炭吸附"装
	-\\	上 程	施	置处理后经 26m 高的	的排气筒 DA001 高空排放。
		711	噪声处理设 施	设减振、隔声措施; 定	期对各种设备进行维护与保养
			固体废物处		收集点,后交环卫部门处理;危险
			理设施		后交有处理资质的单位处理;一般
					废暂存点,后交专业回收公司回收。 污水收集管网及排放口
	6		依托工程		· · · · · · · · · · · · · · · · · · ·
				恋川巾入业	-17 <i>7</i> 7 / / / / / / / / / / / / / / / / / /

3、研发及试验方案

表 2-3 研发及试验方案一览表

					<u> </u>									
序号	研究中 心	研发 类别	年研发 批次/次	研发样品名 称	试验 类别	测试名称	主要测试指标							
		电池 组件 研发	12	高性能超薄 极片	极片机	L械性能测试	机械性能、粘附力							
		电池组件	12	织物基集流 体的研发-织 物表面修饰	集流体	的机械性能	拉伸强度、断裂伸 长率、杨氏模量、 弯曲强度、疲劳寿 命、撕裂强度							
1	新材料 与新能 源研究 中心	研发	12	及表面金属	集流位	体的导电性	祖率、表面电阻							
	中心	十心	7.70	7.0	770	一	十小	中心	扣式			电化	交流之测	循环数据(容量、 电压、容量保持率、 库伦效率)
		电池开发	12	高性能锂电池	学的试	循环伏安 (CV)测 试	氧化还原峰电位和 电流							
				N. T. S.		交流阻抗 测试	不同频率范围内的 阻抗							
	 绿色化			THY)		比表	面积							
	学与可	催化	1			孔径	分布							
2	持续催	剂性 能优	&米	◇ 修饰型沸石 分子筛 A		催化								
	化研究	化	-XXY) 1 Jilli A			 圣性							
	中心					热稳	定性							
	4	仪器 研发	4	双氧水反应 器	电位	化学实验	产率、纯度							
3	绿色的	工艺	外部送 样,不 研发	聚硼硅氮烷 样品 A	分子量、		热稳定性							
***	中心	开发	6	先驱体转化 陶瓷	陶瓷	总涂层实验	涂层厚度、热解后 陶瓷相组成							
- / ~		产品 开发	6	微晶玻璃		透見	村比							

注:

①空间计算与影像研究中心仅利用光学方法研究视觉技术,对现有照明和影像设备的软件和硬件进行优化。不涉及对化学物质的化学反应合成和物理加工过程的研发,同时也不会产生废水、废气、废液的排放。

4、原辅材料

'-		年使用量			最大储存				
研究中心	药剂	年使用重 (千克/ 年)	性状	包装 规格	量(千克/	储存位 置			
	织物表面修饰所需化学品	1	•						
	织物	10 平方米	/	1 平方 米	10 平方 米	二楼 20			
	[3-(甲基丙烯酰氧基)丙 基]三甲氧基硅烷	1	液体	0.5kg/ 瓶	1	二楼 20			
	甲基丙烯酸乙酯三甲基 铵	10	液体	1kg/瓶	10	大學20			
	过硫酸钾	1	固 体	0.5kg/ 瓶	1 17	二楼 20			
	乙醇 ^①	12	液体	0.5kg/ 瓶	\bigcirc 10	二楼 20			
	金属沉积所需化学品								
	硫酸铜	10	固 体 ,		10	二楼 20			
	甲醛水溶液	1	***	1 kg/ 瓶	1	二楼 20			
	酒石酸钾钠		固 体	1 kg/ 瓶	2	二楼 20			
	四氯钯酸铵	1 10.1	固 体	0.1 kg/ 瓶	0.1	二楼 20			
新材料与新能 源研究中心	氢氧化钠	5	固体	1 kg/ 瓶	5	二楼 20			
	组装电池所需证明品								
		1	固体	1 kg/ 袋	1	二楼 20			
	锂金属	2	固 体	0.1 kg/ 袋	2	二楼 20			
HI	正极材料(三元镍钴锰)	5	固 体 平	1kg/袋	5	二楼 20			
X (N)	正极材料 (磷酸铁锂)	5	固 体	1kg/袋	5	二楼 20			
THE PARTY NAMED IN COLUMN	正极材料 (钴酸锂)	5	固 体 田	1kg/袋	5	二楼 20			
	PVDF	1	体流	1kg/袋	1	二楼 20			
	电解液	1	液体流	1 kg/ 瓶	1	二楼 20			
	1-甲基-2-吡咯烷酮	50	液体	5 kg/ 瓶	50	二楼 20			
	CMC-SBR	1	固 体 思	1kg/袋	1	二楼 20			
	石墨	5	固体	1kg/袋	5	二楼 20			

	铝箔、铜箔、负极壳、 正极壳、Celgard 隔膜、 垫片弹片等配件	若干	/	/	/	二楼 209
	氩气	120 瓶	气体	20 L 每瓶	60 瓶	一楼 106
	药剂	年使用量 (千克/ 年)	性状	包装规格	最大储存 量 (千克/ 年)	储存位 置
	3d 过渡金属(铜,铁, 镍等)	2	固体	1kg/袋	2	二楼 205
	氧化铝	2	固 体	1kg/袋	2	205
	石英	2	固 体	1kg/袋	212	二楼 205
	硅酸钠	2	固 体	1kg/袋	2	二楼 205
	铝酸钠	2	固 体	1kg	2	二楼 205
中心	氢氧化钠	2	[])4 k g/ 瓶	2	二楼 205
	氢氧化钾	2	/固 体	1 kg/ 瓶	2	二楼 205
	氮气	(40L 母瓶)	气体	40 L 每瓶	12 瓶 (40L 每 瓶)	一楼 106
	二氧化碳门茅柏	120 瓶(20 L 每瓶)	气体	20 L 每瓶	240 瓶 (20 L 每 瓶)	一楼 106
		120 瓶(20 L 每瓶)	气体	20 L 每瓶	240 瓶 (20 L 每 瓶)	一楼 106
(A) 上知此制	药剂	年使用量 (千克/ 年)	性状	包装规格	最大储存 量 (千克/ 年)	储存位 置
The state of the s	聚硼硅氮烷	0.005	液体	0.05 kg/瓶	0.05	二楼 203
XXX	二甲苯	0.01	液体	0.1 kg/ 瓶	0.1	二楼 203
	陶瓷基底	50	固 体	5kg/包	25	二楼 203
<u>地</u> 测儿宁心	导电炭黑	10	固 体	2kg/包	5	二楼 203
	Nafion117 溶液	0.05	液体	1 kg/ 瓶	1	二楼 203
	聚酯 PET 薄膜	100 张	薄膜	1张	100 张	二楼 203
	PTFE 板	100 张	薄膜	1 张	100 张	二楼 203

硫酸	0.01	液体	1 kg/ 瓶	1	二楼 203
高岭土	2	固 体	1kg/袋	2	二楼 203
氧化物粉末(石英,氧 化铝,氧化钾,氧化钠, 氧化锂,氧化锆等)	0.1	固体	0.1kg/ 瓶	0.1	二楼 203
硝酸钾	0.1	固体	0.1kg/ 瓶	0.1	二楼 203
硝酸钠	0.1	固体	0.1kg/ 瓶	0.1	二楼203
氧气	12 瓶	气体	40 升/ 瓶	12 瓶	楼 203

注:

- ①乙醇作为清洗剂年用量 6kg,作为织物基集流体的研发硅烷化溶剂 (1) 量 6kg。
- ②由于一些原料年用量很少,采购的最小包装已经超过年用量,最近存量确定为最小包装量;打开包装后的原料重新密封后在避免阳光直射、温度不超过,0°C的情况下可以长期贮存,满足实验室长期发展的需要。

主要原辅材料理化性质:

表 2-5 项目主要原辅材料理化性质一览表

	- AVA										
序 号	名称	成分	CAS 号	理化性质	危险性类别						
1.	[3-(甲基丙 烯酰氧基) 丙基]三甲 氧基硅烷	X NITE XX	2530-83-8	有淡香味的无色液体,熔点/凝固点<-70℃,闪点 113℃,初沸点和沸程 120℃在3 百帕。本产品在标准环境条件下(室温)化学性质稳定。危险的分解产物:碳氧化物、二氧化硅,在处理过程中,由于与水反应而放出甲醇。	急性毒性,经皮: 类别 5; 急性(短期)水生 危害:类别 3						
2.	甲基丙烯酸 乙酯三甲基 铵	/	5039-78-1	无色液体,pH 值: 3-6 (25℃),密度: 1.105g/cm³(25℃), 分子量 207.7g/mol。 本产品在标准环境条 件下(室温)化学性质 稳定。	急性毒性,经口: 类别 5; 急性毒性,经皮: 类别 5						

	3.	过硫酸钾	/	7727-21-1	白色无臭固体,熔点 100℃,密度 2.477g/cm³,不易燃, 可燃性固体,分解温 度 170℃。	急性毒性, 经口: 类别 4; 急性(短期)水生 危害: 类别 3
	4.	乙醇	/	64-17-5	无色至淡黄色液体, 微有特臭,味灼烈, 有酒香,易挥发,熔 点/凝固点:-114℃, 初沸点和沸程:78℃ /760mmHg,密度 0.789-0.793g/mL,闪 点 53.6° F/12℃	不能
	5.	硫酸铜	/	7758-99-8	蓝色结晶,熔点: 110 ℃分解,不易燃,密 度 2.284g/cm³。	急性 性, 经口: 类别 4;
	6.	甲醛水溶液	甲醛 (30-50%)	50-00-0	有刺鼻 , 的无色澄 清液 , 初沸点和沸 程 30 ℃,闪点 56.11 (分析),pH2.8-4.0, 密度 1.09mg/L 在 25	急性毒性,经口: 类别 3; 急性毒性,吸入: 类别 2; 急性毒性,经皮: 类别 3; 急性(短期)水生 危害:类别 2
			甲醇 (10-20%)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		急性毒性:类别3
	7.	酒石酸钾钠	/ ** **********************************	6381-59-5	灰白色或米色固体, pH7.0-8.5, 体积密度 大约 1000kg/m ³	/
	8.	四氯钯酸铵	X MILITAN	13820-40-1	深棕色固体,密度 2.17g/cm³ 在 25℃	急性毒性,经口: 类别 4; 急性毒性,吸入: 类别 4; 急性毒性,经皮: 类别 4。
	9	氢氧化钠	/	1310-73-2	苛性钠,分子量 40, 相对密度 1.515	急性(短期)水生 危害:类别3
	10.	锂金属	/	7439-93-2	金属色固体,熔点: 180℃,初沸点和沸程 1342℃在 1013 百帕, 密度 0.534g/cm ³	/
	11.	正极材料 (三元镍钴 锰)	/	346417-97-8	黑色粉末,熔点>290 ℃,不易燃,密度 2.11g/cm ³	/
	12.	正极材料 (磷酸铁 锂)	/	15365-14-7	粉末状,熔点>300 ℃。	/

13.	正极材料(钴酸锂)	/	12190-79-3	黑色粉末,熔点/凝固 点>600℃在 1014 百 帕,密度 4.82g/cm³ 在 22.5℃	急性(短期)水生 危害:类别1
14.	PVDF	/	24937-79-9	白色粉末,熔点 165 ℃,分解温度>315 ℃,密度 1.74mg/L 在 25℃	/
		1,3-二氧戊 环-2-酮 (50-70%)	96-49-1	液体,初沸点和沸程	急性毒性:类别4
15.	电解液	碳酸二乙酯 (30-50%)	105-58-8	130℃,闪点 30℃, 密度 1.26g/cm³	The state of the s
		六氟磷酸锂 (10-20%)	21324-40-3		急性毒性:类别3
16.	1-甲基-2-吡 咯烷酮 (NMP)	/	872-50-4	胺样气味的无色澄淡液体,初沸点和淡层。 202℃,81-82℃ 13 百帕,闪点 3℃(闭 杯), 13%温度 245 ℃在 10-3 百帕,密度	急性毒性, 经口: 类别 5。
17.	氢氧化钾	/	1310-5	为 苛性钾,白色片状	急性毒性,经口: 类别 4; 急性(短期)水生 危害:类别 3
18.	聚硼硅氮烷	N. TENTA	9004.73-3	无色液体,熔点/凝固 点>177℃,初沸点和 沸程>177℃,闪点 121℃,相对密度 0.995	/
19.	X THE STATE OF THE		106.42-3	无色透明液体,有类似甲苯的气味,熔点 13.3℃,沸点 138.4℃,相对密度(水=1) 0.86,闪点 25℃,不溶于水,可混溶于乙醇、乙醚、氯仿等多数有机溶剂。	急性毒性,经口: 类别 5
1		水 42-48%	/	聚合物含量:	
20.	水 42-48% 全氟磺酸 5-5.4% 1-丙醇 45-51%	全氟磺酸	375-73-5	5.0-5.4%,水含量: 42-48%,挥发性有机	,
۷٠.		1-丙醇	71-23-8	化合物含量: 47-53%,总酸容量: 1.03-1.12meq/g	,

21.	硫酸	/	7664-93-9	无臭,无色至淡黄色油状液体,无气味,具强吸水性。熔点3℃,初沸点和沸程290℃/760mmHg,密度1.84g/mL,能与水和乙醇混溶。	急性毒性,经口: 类别 5
22.	硝酸钾	/	7757-79-1	白色粉末或晶体,熔 点 333℃,相对密度 2.109,易制爆。	急性毒性,经口: 类别 5; 急性毒性,吸入: 类别 3; 急性毒性,变皮:
23.	硝酸钠	/	7631-99-4	无臭固体,熔点 306 ℃分解,初沸点和沸 程 380℃,不易燃, 无闪火,密度 2.26g/cm ³ 在风	性毒性, 经口: 类别 5

乙醇作为清洗剂的可行性分析:项目使用的乙醇产度为0.789~0.793g/m³。

式中:

ρvoc 清洗剂 VOC 含量,单位为克每升(g/L)

w_# ——样品测试液中挥发性物质的质量分数、

w* — 样品测试液中水分的质量分数, 9

 w_i 样品测试液中可扣减物质i 的质量分数,%;

ρ — 样品测试液的密度,单位为支充升(g/L);

0.01 --- 换質系数。

经公式计算,项目**工作**的挥发性有机物含量为789-793g/L,满足《清洗剂中可挥发性有机化合物》VOCs)含量的限值》(GB38508-2020)表1,有机溶剂清洗剂VOCs含量≤900g/L的要求。

又根據,东省生态环境厅《关于企业使用"涂料、胶粘剂、油墨和清洗剂等"事宜资油(新标准颁布后)》,在国家尚未明确高VOCs含量限值标准之前,超过,清洗剂挥发性有机化合物含量限值》(38508-2020)等标准限值的,暂为高VOCs含量清洗剂,本项目乙醇VOCs含量未高于《清洗剂挥发性有机化合物含量限值》(38508-2020)标准限值,因此不属于高VOCs含量清洗剂。

5、主要设备

表 2-6 主要设备一览表

研究中心	实验室	设备名称	型号(尺寸规格)	数量 (台)	用 途/ 工	位 置
------	-----	------	----------	-----------	--------------	--------

	•						序	
		材料合	1.	超纯水机	Milli-Q® 台式实 验室纯水系统 (0.3*0.3*0.4 m)	1	提供纯水	5F
		成实验室	2.	等离子清 洗机及真 空泵	HARRCK PLASMA PDC-002 (0.5*0.5*0.3)	1	织物氧化	5F
			3.	手套箱	米开罗那 (1.5×0.8×1)	3	电池 组装	5F
			4.	搅浆机	力辰(0.3*0.3*0.2)	6		5F
			5.	涂布机	科晶 (0.4/*0.4*0.6)	112	涂布	5F
		电池	6.	鼓风烘箱	力辰(0.5*0.5*0.6)	३ 3	干 燥、 聚合	5F
		组	7.	辊压机	科晶 (0.4/*0.4****)	1	辊压	5F
		装实	8.	切片机	科晶(0.4*04*0.6)	1	切片	5F
		安 验室	9.	电子天平	力辰 (0.3*0.3*0.3)	4	称量	5F
			10.	真空烘箱	(0.5*0.5*0.6)	3	真空 烘干	5F
			11.	注液器	科晶 (0.3/*0.3*0.3)	2	注液	5F
	新材料与新能源研究中心		12.	组拟表地	科晶 (0.3/*0.3*0.3)	2	封装	5F
			小学	放包电池 封装机	科晶 (0.4/*0.4*0.5)	1	封装	5F
		测试实验室	14.	电池测试 低温箱	科晶(0.6/*0.6*1)	1	电化 学性 能测 试	2F
			15.	电池测试 恒温箱	科晶(0.6/*0.6*1)	3	电化 学性 能测 试	2F
	大型 T		16.	电池测试 通道	蓝电(0.6*0.6*1.2)	50 排	电化 学性 能测 试	2F
			17.	电化学工作站	辰华 CHI 660 (0.3*0.3*0.3)	1	测电学能 试	2F
			18.	万能力学 试验机	英斯特朗 (0.5*0.5*1.5)	1	机械 性能 测试	2F

			19.	电阻率测 试仪	胜利仪表 (0.3*0.3*0.3)	1	导电 性测 试	2F
			1.	磁力搅拌	力辰(0.3*0.3*0.2)	4	溶液制备	6F
			2.	高压反应 釜	科晶 (0.05*0.05*0.05)	4	水热 合成	6F
			3.	管式炉	科晶 (0.6*0.5*0.3)	1	焙烧	6F
		绿	4.	鼓风烘箱	力辰(0.5*0.5*0.6)	1	干燥	6F
		· 色 化 学	5.	高压固定 床反应器	华思 FD-2050 0.2*0.2*0.6	3 /	催化测试	2F
		, 与 可	6.	气相色谱	安捷伦 Agilent 8890	312	比表面	2F
	绿色化学与可持续催化研 究中心	持续催化实验室	7.	气质联用 仪	1*0.6***********************************	1	积孔分布选性试	2F
			8.	热重分析	岛津(0.4*0.4*0.3)	1	热稳 定性 测试	2F
			9. x	趋纯水机	Milli-Q® 台式实 验室纯水系统 (0.3*0.3*0.4 m)	1	提供纯水	6F
	2	Ť		磁力搅拌 器	力辰(0.3*0.3*0.2)	4	墨水 配制	4F
		, , , , , , , , , , , , , , , , , , ,	2.	旋涂仪	科晶(0.5*0.5*0.3)	1	涂层 制备	4F
	EMI X	绿色	3.	光刻机	尼康(1*1*1)	1	结构 图案 化	4F
_,	与智能制造研究中心	与智能制	4.	真空干燥 箱	科晶(0.5*0.5*0.5)	2	干 燥、 热处 理	4F
[-		实	5.	管式炉	科晶(0.5*0.5*0.8)	2	热解 处理	4F
		验 室	6.	钛气体流 动室	CHI (0.1*0.1*0.1)	4	气体 供给	4F
			7.	三电极流动池	CHI (0.1*0.1*0.1)	4	电化 学反 应	4F
			8.	混合机/球 磨机	科晶 (0.5*0.5*0.8)	2	混合	2F

9.	石墨炉	科晶 (0.5*0.5*0.8)	1	熔炼	2F
10.	马弗炉	科晶 (0.5*0.5*0.8)	2	晶化	2F
11.	熔盐浴设 备	科晶 (0.5*0.5*0.8)	2	强化	2F
12.	温度控制 器	力辰(0.1*0.1*0.3)	4	强化	2F
13.	超纯水机	Milli-Q® 台式实 验室纯水系统 (0.3*0.3*0.4 m)	1	提供 纯水	4F
14.	多通道电 化学工作 站	CHI (0.4*0.4*0.3)	1	电化	4F
15.	万能力学 试验机	英斯特朗 (0.6*0.6*1.5)		 涂层 厚度 测试	4F
16.	气相色谱 仪	赛默(0.5************************************	1	热后瓷组测	4F
17.	紫外可见 分光光度	赛默飞 (0.6*0.6*0.4)	1	玻璃 透射 比 试	4F

- 注: ①每个实验室配备烧杯、移液枪、块块等实验器材若十
- ②项目设备均使用电能,不涉及

6、公用工程

(1) 给排水工程

给水工程:

①生活用水

项目 死人员 50 人,均不在项目内食宿,根据广东省地方标准《用水定额 分: 生活》(DB44/T1461.3-2021),表2居民生活用水定额表—城镇居民 城镇,用水定额为 140L/(人·d),则生活用水量为 1610t/a,由市政管网供 给。

②研发用水

表 2-7 研发用水一览表

研究中	研发类别	用水环节	用水类型	单次用水 量(L)	年用水 批次	年用 水量 (L)
-----	------	------	------	--------------	-----------	-----------------

	高性能超	负极浆料制备	纯水	0.5	12	6	
	薄电池极 片研发制	实验器材清洗	自来水	4	12	48	
		>142 HA 1411400	纯水	1	12	12	
المادا المسد	备	设备清洗	自来水	4	6	24	
新材料	高性能锂		自来水	2	12	24	
与新能源研究	电池研发 制备	实验器材清洗	纯水	1	12	12	
中心	织物基集	清洗	纯水	3	12	36	
	流体的研	实验器材清洗	自来水	4	6	24	
	发	<u> </u>	纯水	1	6	16	
	合计			纯水		<u></u>	
			自来水				
	催化剂性 能优化	溶液配制(前驱体 溶液)	纯水	1	W V	6	
绿色化 学与可		溶液配制(金属悬 浮液)	纯水	1 134	5 6	6	
持续催		清洗	纯水		6	24	
化研究		分 孙 思	自来水	X-4	6	24	
中心		实验器材清洗		1	6	6	
	合计		alv	42			
			N SA	自来水		24	
	先驱体转		水水	4	6	24	
	化陶瓷工 艺的研发	实验器材清洗	纯水	1	6	6	
妇女上	カラルら	清洗	纯水	1	4	4	
绿色与 智能制	双氧水反 应器	实验器 反清 洗	自来水	5	4	20	
造研究			纯水	2	4	8	
中心		清洗	纯水	4	4	16	
	微晶玻璃	公 实验器材清洗	自来水	4	4	16	
		人名亚 相广门 1月 亿	纯水	1	4	38	
	合计		纯水				
	· C2.			自来水		60	

综上,目新材料与新能源研究中心年用纯水 72L, 绿色化学与可持续催化研究中心年用纯水 42L, 绿色与智能制造研究中心年用纯水 38L。三中心各自配置验室级别小纯水机,纯水机参数如下:

表 2-8 实验室级别小纯水机参数一览表

设备名称	设备型号参数	系统产量	进水条件	产水水质
超纯水机	Milli-Q® 台式实 验室纯水系统 (0.3*0.3*0.4 m) 双级反渗透	20L/H (15-35℃); 产水率 50%	自来水, 5-40℃	纯水: 电导率<5μs/cm,符合GB6682-2008 分析实验室三级水标准超纯水:符合 ASTMD1193-06

(2018), GB/T11446.1-2013, GB/T33087-2016 一级水标准

项目纯水总用量 152L,产水率 50%,则纯水用自来水量 304L。项目新材料与新能源研究中心年用自来水(不含纯水用自来水)120L,绿色化学与可持续催化研究中心年用自来水(不含纯水用自来水)24L,绿色与智能制造研究中心年用自来水(不含纯水用自来水)60L。

综上,项目年用水量 508L,即 0.508t/a。

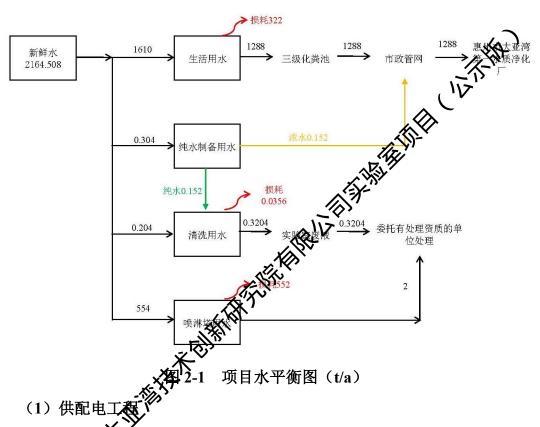
③喷淋塔用水

项目设置一个喷淋塔,配套水箱容量 1m³。根据《简明通风设计手册》"各种吸收装置的技术经济比较"中填料塔的液气比为 1.0~10L/m³,项及烟气温度较低为常温烟气,故液气比设置为 1.0L/m³,喷淋塔对应风量为 3.0000m³/h,则循环水量 30m³/h。循环水在使用过程中由于蒸发等因素,会有 的耗损,耗损量以循环水量的 1%计,则喷淋塔因损耗需要补充的新鲜水量为 0.3m³/h(552m³/a)。由于废气中的颗粒物会沉降在喷淋塔中,导致水量 SS 和盐分升高,同时甲醛、乙醇等水溶性 VOCs 的吸收,导致水中 COD 有一段时间后需要进行更换,更换量 大次,每半年更换一次,则喷淋塔更换补充水量为 2t/a。综上喷淋用水合计为 4t/a。

排水工程:

①生活污水

项目所在地为预方分流制,雨水接入市政雨水管;根据《排放源统计调查产排污核算方法和系数手册》人均日生活用水量≤150升/人·天时,污水按用水量 0.8 计,项目 1.28 表 方 5.6 t/d,即 1.28 t/a。经化粪池处理后排入市政污水管 网,本入惠州市大亚湾第一水质净化厂,处理达标后尾水排入淡澳河。


②研发废水

纯水制备浓水:项目自制纯水使用自来水,根据建设单位提供的资料,项目 纯水年用量 152L,纯水制备率 50%,则消耗自来水 304L,纯水制备浓水产生量 152L,主要污染物为 CODcr、SS,排入市政污水管网,纳入惠州市大亚湾第一水质净化厂,处理达标后尾水排入淡澳河。

清洗废水: 根据建设单位提供的资料,项目清洗、设备及实验器材清洗产生

清洗废水,详见表 2-7,清洗用水量合计为 356L,损耗量按 10%计,则清洗废水产生量为 304.2L,作为实验室废液收集后委托有处理资质的单位处理。

喷淋塔废水: 喷淋水循环使用按需补充,使用一段时间后需要进行更换,每半年更换一次,更换量 2t/a,更换的喷淋塔废水作为危废委托有处理资质的单位处理。

供配电: 依拍市政电网供电。

(3) 产为定员及工作制度

表 2-7	项目劳动定员及工作制度

元党是员	厂内食宿	工作班次	日工作时间	年工作时数
50 人	0人	一班制	8 小时/班	1840 小时(230 天)

(4) 项目平面布置及四至情况

平面布置:

本项目位于大亚湾科技创新园孵化楼 2 栋。项目 1F 主要布置有接待厅、展厅、危废间、气瓶储存仓(戊类)、空间计算与影像研究中心的智能照明实验室和测量标定实验室(暗房); 2F 主要布置有办公区、绿色与智能制造研究中心的

玻璃和陶瓷实验室、新材料与新能源研究中心的电池实验室和电池测试室、绿色 化学与可持续催化研究中心的化学实验室: 3F 主要布置有办公区、空间计算与影 像研究中心的物理实验室和标定实验室(暗房)、会议室; 4F 为绿色与智能制造 研究中心,主要布置有办公区、光机电与自动化实验室、材料实验室、化学实验 室: 5F 为新材料与新能源研究中心,主要布置有办公区、2 个产品及物料存储间、 2个薄膜工艺间、1个电池工艺间; 6F 为绿色化学与可持续催化研究中心,主要 布置有办公区、6个储物室、2个实验室、1个合成室、1个表征室和1个级处

项目功能分区明显, 预留有满足要求的消防、物流输送通道, 面布置基本合理,项目平面布置图详见附图3。

四至情况:

工艺原,北京 以目聚集区。 山研发工艺流程如下: 新材料与新能源研究中心 (1) 高性能超薄电池极片研发 排 污环节 根据现场勘察,本项目东面为 S30,南面 30m 为科本 隔科技路为中润达大厦,北面 30m 为科创 A 栋 (1)

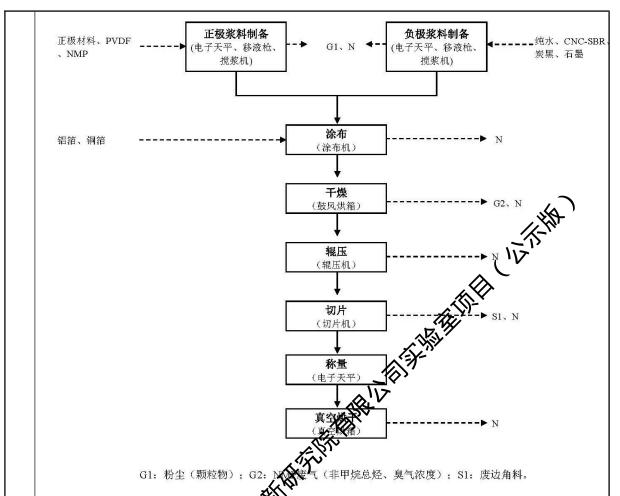


图 2-2 高性能超過 地极片研发制备工艺流程及产污环节图 研发工艺流程简介: **

①正极浆料制备。按照比例使用电子分析天平称取正极材料(三元镍钴锰、磷酸铁锂、钴酸铀)、粘结剂聚偏氟乙烯(PVDF),并投入搅浆机中,使用移液枪等缓慢。 1-甲基-2-吡咯烷酮(NMP),防止结块。启动搅浆机,室温低速搅拌 5min 初步混合;提高搅拌速度至中速(控制搅拌速度、防止分子键断裂),室罩搅拌 1h,确保浆料均匀无颗粒。检查浆料的粘度和均匀性,必要时调整溶剂量。搅拌过程均为物理机械过程,不改变原有物料化学物质结构,不发生化学反应。

由于室温搅拌升温有限,NMP 常温挥发度极低,热稳定性好,由搅拌升温引起的 NMP 挥发量可忽略不计。

此工序产生 G₁ 粉尘(颗粒物)和 N 噪声。

②负极浆料制备:按照比例使用电子分析天平称取 CMC-SBR、石墨、炭黑,

并投入搅浆机中,使用移液枪等缓慢加入纯水,防止结块。启动搅浆机,室温低速搅拌 5min 初步混合,提高搅拌速度至中速(控制搅拌速度、防止分子键断裂),室温搅拌 1h,确保浆料均匀无颗粒。检查浆料的粘度和均匀性,必要时调整溶剂量。搅拌过程均为物理机械过程,不改变原有物料化学物质结构,不发生化学反应。

此工序产生 G₁ 粉尘(颗粒物)和 N 噪声。

③涂布干燥:将制备好的正极浆料/负极浆料转移至涂布机料斗中,涂布机涂浆轮通过刀口间隙使浆料均匀地分布在涂浆轮上,然后通过辊涂将浆料涂覆在传动轮的基料上,再将浆料按设定尺寸均匀涂布铝箔(正极)/铜箔(负极),检查涂布的均匀性和厚度,确保无漏涂或过厚现象。完成涂覆后的极片送入鼓风烘箱行干燥,干燥温度约为80℃,其中正极干燥时间12小时,负极干燥时间2小时,期间定期检查极片的干燥情况,确保无溶剂残留。

由于 NMP 废气无参照的环境质量标准和污染物排放标准,以非甲烷总烃为评价指标分析 NMP 废气。项目 NMP 使用发程中还会产生恶臭气体,以臭气浓度计。

此工序会产生 G₂NMP 废气 MHC、臭气浓度) 和噪声。

②辊压: 干燥后的极片或 辊压机中,调整辊压机的压力和速度,启动辊压机,均匀辊压极片以提高 度和附着力。检查辊压后的极片厚度和表面平整度。此工序产生噪

⑤切片: 将辊压后的极片放入切片机中,根据设计尺寸调整切片机参数,启动切片机 割至特定尺寸,检查切片的尺寸精度和边缘整齐度。

此工序产生 S1 废边角料和噪声。

⑦真空烘干: 将称量后的极片放入真空烘箱中,设置烘箱温度为 110℃,真空度为-0.1MPa,干燥时间为 12 小时,直到各物质含水量在工艺要求范围内。取出极片,冷却至室温后进行后续处理。

此工序产生噪声。

试验工艺流程简介:

极片机械性能测试:

1) 正极极片

①机械性能

根据《锂离子电池用铝及铝合金箔》(GB/T33143-2022),采用万能力学试验机,对极片尺寸偏差(尺寸修约、厚度、面密度、宽度等)、室温拉伸力学性能、表面张力等进行测试,测试过程无需添加其他试剂,不涉及化学反应为物理性能测试。

②粘附力

根据《胶粘带剥离强度的实验方法》(GB/T2792-2014),采用万能力学试验机,对极片粘附力进行测试测试过程无需添加其他试验不涉及化学反应,为物理性能测试。此工序产生 S2 废胶粘带。

2) 负极极片

①机械性能

根据《锂离子电池用压延铜箔》(T36146-2018),采用万能力学试验机,对外观尺寸及其允许偏差(单位、状质量、宽度等)、力学性能、表面质量等进行测试,测试过程无需添加表记试剂,不涉及化学反应,为物理性能测试。

②粘附力

根据《胶粘带系为强度的实验方法》(GB/T2792-2014),采用万能力学试验机,对极片粘附力进行测试测试过程无需添加其他试剂,不涉及化学反应,为物理性能源。此工序产生 S2 废胶粘带。

厂高性能锂电池研发制备

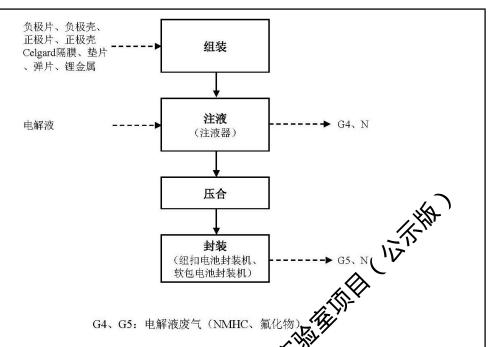


图 2-2 高性能锂电池研发制备工艺流程及产污环节图

研发工艺流程简介:

以下操作均在手套箱内完成,操作过程,套箱为氩气环境。

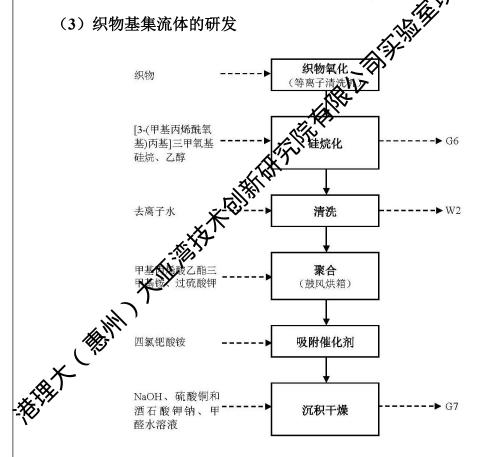
①组装:将研发的负极片、锂金属及入负极壳,确保平整居中,检查负极片的边缘与壳体的接触情况,确保无效路风险。在负极片上放置一层 Celgard 隔膜,确保其完全覆盖负极片,将正设片放置在隔膜上,确保其与负极片对齐,依次放入垫片和弹片,确保各层材料紧密接触。

②注液: 使用涂液器精确量取约 80μL 电解液,将电解液缓慢注入电池组件中,确保均匀分布,检查电解液的浸润情况,确保隔膜和极片充分湿润。

项目**体**的电解液由 1,3-二氧戊环-2-酮(50-70%)、碳酸二乙酯(30-50%)、六氟磷酸锂(10-20%)组成,由各物质的理化性质可知,均属于低挥发性有机溶剂,以用时挥发量很少,由于注液废气无参照的环境质量标准和污染物排放标准,参考《电池工业污染物排放标准》(GB30484-2013),以非甲烷总烃为评价指标分析注液废气。六氟磷酸锂暴露在潮湿和高温环境时,性质极不稳定,易自催化分解为 LiF 和 PF₅,与水反应生成活性物质如 H₃PO₄ 和 HF,同时六氟磷酸锂也易水解,会与水反应生成 HF,因此产生氟化物。

此工序产生 G₄ 电解液废气 (NMHC、氟化物)和噪声。

③压合:将正极壳对准负极壳,轻轻压合,确保正极壳与负极壳的边缘对齐, 无错位。检查组件的整体紧密性,确保无松动。

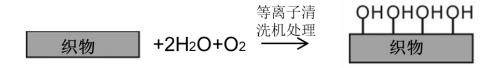

④封装: 将压合好的电池放入封装机中,启动封装机,按照设定程序进行封装。检查封装后的电池外观,确保无漏封或变形。

此工序产生 G5 电解液废气(NMHC、氟化物)和噪声。

试验工艺流程简介:

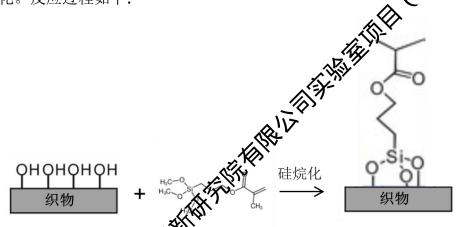
电化学性能测试:

根据《电动汽车用锂离子动力电池包和系统电性能试验方态》(GB T31467-2023),采用电池测试低温箱、电池测试恒温箱、电池测试通道、电化学工作站对电化学性能进行测试,测试过程无污染物产生。



G6: 溶剂废气(NMHC)、G7: 甲醛废气(甲醛)、W2清洗废水

图 2-3 织物基集流体的研发制备工艺流程及产污环节图 研发工艺流程简介:


①织物氧化:织物加入等离子清洗机处理(项目使用的等离子清洗机对空气

施加足够的能量使之离化成为等离子状态,通过等离子体的活性组分的性质来处理织物表面),使织物表面接枝羟基管能团。

此工序产生噪声。

②硅烷化:将[3-(甲基丙烯酰氧基)丙基]三甲氧基硅烷以10%的比例溶解在0.5kg 乙醇(年用量6kg)中,搅拌均匀以后,加入织物,室温浸泡4~时,使其硅烷化。反应过程如下:

乙醇属于低挥发性有机之剂,由于乙醇无参照的污染物排放标准,因此以非 甲烷总烃为评价指标分析咨剂废气。

此工序产生 G 利废气(NMHC)。

③清洗聚合 硅烷化后的织物取出,使用去离子水反复清洗三次,单次去离子水用量 清洗干净的织物浸入甲基丙烯酸乙酯三甲基铵水溶液中,加入过硫酸钾 催化剂)引发聚合反应,在鼓风烘箱中 80℃下保温 1h。反应过程如下:

此工序产生 W2 清洗废水。

- **④吸附催化剂:**表面修饰聚合物的织物放置于的四氯钯酸铵溶液中,浸泡15-30min,吸附催化剂。
- ⑤沉积干燥: 将吸附催化剂的织物放置于 NaOH、硫酸铜和酒石酸钾钠 (稳定剂)的混合溶液中,随后加入 30%的甲醛做还原剂将铜离子还原成铜单质沉积 在织物表面。2h 后取出织物,在真空烘箱中真空干燥。反应过程如下:

$2Cu^{2+}+H_2CO+4OH^{-}\rightarrow 2Cu+CO_2+2H_2O$

二氧化碳属于温室气体,根据《关于开展重点行业建设项目碳排放术境影响评价试点的通知》,项目位于广东省,但不属于石化行业,因此不针对二氧化碳开展碳排放分析。

此工序产生 G7 甲醛废气(甲醛)。

试验工艺流程简介:

1) 机械性能

根据《金属材料拉伸试验 第 1 部分: 《温试验方法》(GB/T228.1-2021), 采用万能力学试验机对集流体的机械 (拉伸强度、断裂伸长率、杨氏模量、 弯曲强度、疲劳寿命、撕裂强度、行测试,测试过程无污染物产生。

2) 导电性

根据《金属材料 电光率测量方法导电性能》(GB/T 351-2019),采用电阻率测试仪对集流体的。阻率和表面电阻进行测试,测试过程无污染物产生。

- 二、绿色化学与可持续催化研究中心
 - (1) ** 型沸石分子筛 A 的研发

图 2-4 修饰型沸石分子筛

研发工艺流程简介:

①溶液制备:

在磁力搅拌器上, **Ł酸钠和铝酸钠溶解在去离子水中,形成均匀的** 前驱体溶液;

将 3d 过渡金属 (铜,铁,镍等)分散在去离子水 同时,在磁力 中,形成金属悬浮液。

②混合; 调节 pH: 将金属悬浮液缓慢加入到前驱体溶液中,搅拌均匀; 使 化钠或氢氧化钾溶解调节 pH 至 10-12。

③水热合成:将混合溶液转移至高压反应釜中,加入适量氧化铝和石英;密 闭反应釜,在管式炉中加热至150-200℃,保持12-48小时。合成主要涉及硅氧四 面体和铝氧四面体的缩合反应。反应可以表示为:

$SiO_2 + Al_2O_3 + 8OH^- \rightarrow SiO_4^{4-} + AlO_4^{4-} + 4H_2O_1^{4-}$

④冷却过滤洗涤:反应结束后,反应釜冷却至室温;使用去离子水多次洗涤 产物,直至洗涤液 pH 接近中性。

此工序产生 W3 清洗废水。

⑤干燥焙烧:洗涤后的固体产物在鼓风烘箱中 100-120℃干燥 12 小时;干燥后,将产物转移至管式炉中,500-600℃空气气氛下焙烧 4-6 小时,进一步去除杂质。

最终得到的修饰型沸石分子筛A储存在干燥环境中。

试验工艺流程简介:

1) 催化活性

- ①催化剂装填:将研发得到的修饰型沸石分子筛 A 均匀装填于高水固定床反应器的催化剂床层中。
- ②反应器准备:检查高压固定床反应器的密封性,确保企业漏;连接气体气体流量控制系统,设置二氧化碳和氢气的流量比例; 启动温度和压力控制系统,预热反应器至 500°C。
- ③反应启动:在反应器达到设定温度和压力后,开始通入反应气体;调整气体流量,确保二氧化碳和氢气的比例为 9000;记录反应开始时间,并启动数据采集系统。反应过程如下:

 $^{4}4H_{2}\rightarrow CH_{4}+2H_{2}O$

甲烷属于温室气体,根据《关于加强重点行业建设项目环境影响评价中甲烷管控的通知(征求意见稀》编制说明》,项目不属于煤炭开采、石油和天然气开采、畜禽养殖、生活,圾填埋以及污水处理厂五大行业,因此甲烷不作为特征污染物进行分析。

- ②数据采集和分析:使用数据采集系统记录反应过程中气体的转化率和产物分布; 定期采集反应产物样品,进行成分分析;记录反应过程中催化剂的活性变体, 意定性。
- **⑤反应结束与设备清理**:反应结束后,逐步降低反应器温度和压力;停止气体流入,关闭所有阀门;清理反应器内部,取出催化剂样品。

2) 比表面积、孔径分布、选择性

根据《气体吸附 BET 法测定固态物质比表面积》(GB/T19587-2017),采用气相色谱法(氮气作为载气)使用气相色谱仪、气质联用仪测定修饰型沸石分

子筛 A 的比表面积,测试过程无污染物产生。

采用氮气吸附-脱附等温线法,使用气相色谱仪、气质联用仪测定修饰型沸石分子筛 A 的孔径分布,测试过程无污染物产生。

采用产物气相色谱分析法,使用气相色谱仪、气质联用仪测定修饰型沸石分子筛 A 的选择性,测试过程无污染物产生。

3) 热稳定性

根据《物质热稳定性的热分析试验方法》(GB/T13464-2008)采用热重分析 (TGA) 法测定修饰型沸石分子筛 A 的热稳定性。

原理: 采用热重分析仪测量物质的焓变温度(包括起始放热温度、外推起始放热温度和峰温)和反应焓的值,以此来评价物质的热稳定。

试验步骤:

- ①仪器温度校准按附录 A 进行,校准温度精度的在±0.5℃范围内。
- ②宜根据操作手册的要求,对试验仪器进行温度校准,校准温度信号的精度至 ± 0.5 °C,校准热流信号的精度至 ± 0.5 %
 - ③测量试样的质量并记录。
- ④将试样和参比物(参比物系试验温度范围内不发生焓变,并应储存在干燥器中待用。典型的参比物有经的氧化铝玻璃珠、硅油或空容器等)分别放人各自的样品容器中,并使之类式样容器有良好的热接触(对于液体试样,最好加人试样重量 20%的惰性分,如氧化铝等)。将装有试样和参比物的样品容器一起放入仪器的加热装置内,并使之与热传感元件紧密接触。
- ⑤接近源(可采用空气、氮气等作为气源,氮气应达到 99.9%以上气体纯度) 并将气体流量控制在 10mL/min~50mL./min 的范围内; 如果在静止状态下 测量,则不需要通气。
- **⑥**根据所用试样的性质和仪器的正常工作温度区间和压力范来确定试验温度范围和试验压力范围。
- ⑦启动升温控制器,控制升温速率在 2° C/min~- 20° C/min 的范围内,记录温 差 Δ T(或功率差 dH/dT)与温度丁的关系曲线,即 DTA 曲线(或 DSC 曲线)。根据修饰型沸石分子筛 A 研发工艺过程,此项测试过程无污染物产生。

三、绿色与智能制造研究中心

(1) 先驱体转化陶瓷工艺的研发

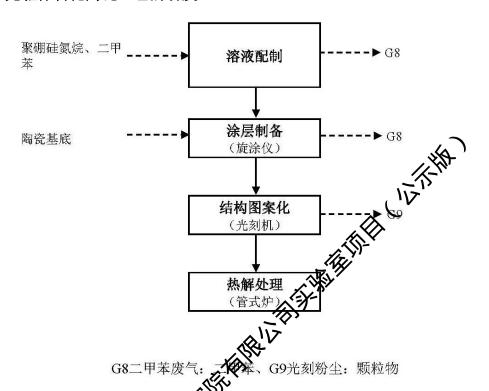


图 2-5 先驱体转化陶瓷工艺流程及产污环节图

研发工艺流程简介:

①溶液配制:以二甲苯分溶剂,配置一定浓度的聚硼硅氮烷溶液。 此工序产生 G8 二% 本废气(二甲苯)。

②涂层制备:使用旋涂仪在陶瓷基底上制备均匀的聚硼硅氮烷聚合物涂层。 此工序产生 G8 二甲苯废气(二甲苯)。

③结构 案化:采用光刻机,在涂层上制备所需的结构图案。

光工序产生 G9 光刻粉尘(颗粒物)。

冷 ④热解处理 · 将样品放入管式炉,在 1000℃的惰性气氛(Ar)中热解,得到 陶瓷涂层。反应过程如下:

试验工艺流程简介:

1) 聚硼硅氮烷样品 A

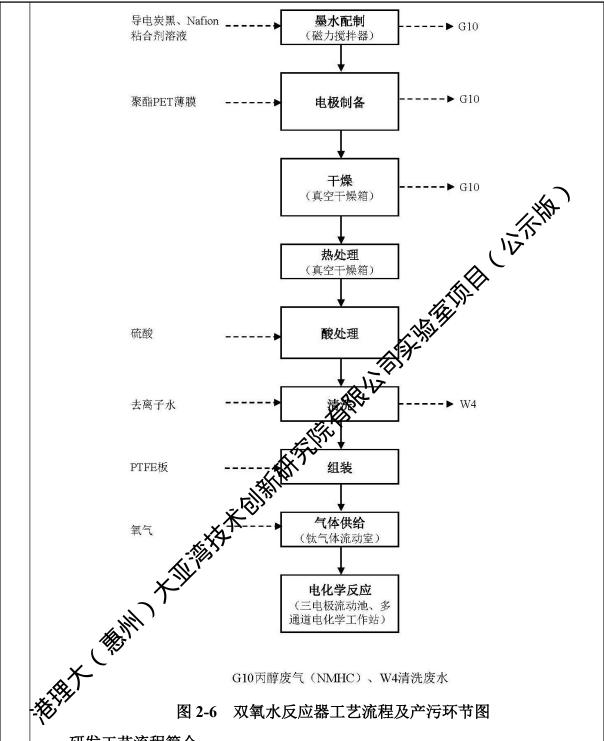
①分子量

采用气相色谱仪测定外送聚硼硅氮烷样品 A 的分子量,测试过程无污染物产生。

②热稳定性

根据《物质热稳定性的热分析试验方法》(GB/T13464-2008)采用热重分析 (TGA) 法测定外送聚硼硅氮烷样品 A 的热稳定性。

原理:采用热重分析仪测量物质的焓变温度(包括起始放热温度分析推起始放热温度和峰温)和反应焓的值,以此来评价物质的热稳定性。


试验步骤:

- ①仪器温度校准按附录 A 进行,校准温度精度应在1.5℃范围内。
- ②宜根据操作手册的要求,对试验仪器进行温度校准,校准温度信号的精度至 ± 0.5 °C,校准热流信号的精度至 ± 0.5 %。 \checkmark
 - ③测量试样的质量并记录。
- ④将试样和参比物(参比物在试验温度范围内不发生焓变,并应储存在干燥器中待用。典型的参比物有烧的。化铝玻璃珠、硅油或空容器等)分别放人各自的样品容器中,并使之与试验容器有良好的热接触(对于液体试样,最好加人试样重量 20%的惰性材料。如氧化铝等)。将装有试样和参比物的样品容器一起放入仪器的加热装置。并使之与热传感元件紧密接触。
- ⑤接通气源(可采用空气、氮气等作为气源,氮气应达到 99.9%以上气体纯度),并从体流量控制在 10mL/min~50mL./min 的范围内;如果在静止状态下进行测量,则不需要通气。

根据附件 8.17 外送聚硼硅氮烷样品 A 的 MSDS 和《聚硼硅氮烷的合成及其热解产物的组成及结构-无机材料学报 2008, 23 (3): 525-530; 唐云等》,此项

根据《陶瓷材料抗压强度试验办法》(GB/T4740-1999),采用万能力学试

,科抗压强度试验办法》(GB/T4740-1999),采用 。命层的厚度进行测试,测试过程无污染物产生。 。解后陶瓷相组成 采用气相色谱仪测定热解后陶瓷相组成,测试过程无污染物产生。 (2)双氧水反应器

研发工艺流程简介:

①墨水配制:将导电炭黑与 Nafion-117 溶液按比例混合,确保混合物均匀。使用磁力搅拌器对混合物进行搅拌,持续时间为 30 分钟,以确保充分分散。

丙醇属于低挥发性有机溶剂,由于丙醇无参照的污染物排放标准,因此以非 甲烷总烃为评价指标分析丙醇废气。

— 56 —

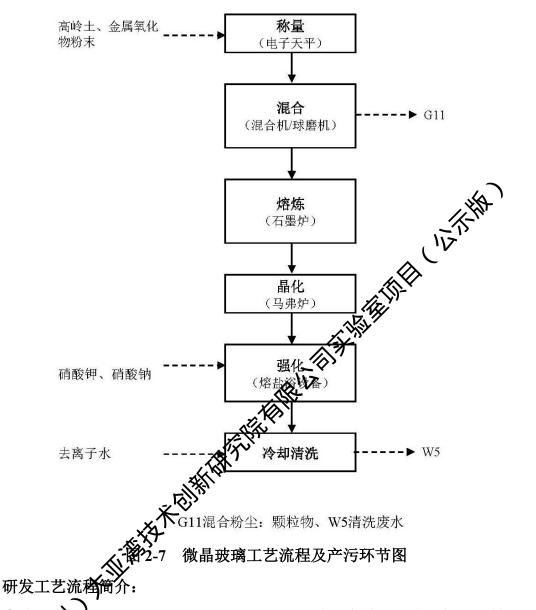
此工序产生 G₁₀ 丙醇废气(NMHC)。

②电极制备:在室温(约 25° C)下,将配置好的墨水滴在聚酯 PET 薄膜上,形成涂层,确保涂层均匀且无缺陷。

此工序产生 G₁₀ 丙醇废气(NMHC)。

③干燥:将制备好的电极置于真空干燥箱中,在室温下干燥 2 小时,以去除溶剂和水分。

此工序产生 G10 丙醇废气 (NMHC)。


- ④热处理:将处理后的Nafion-117膜放入80°C的真空干燥箱中处理1小时; 以增强其质子传导性。
- **⑤酸处理:** 将 Nafion-117 膜浸泡在 10%(v/v)H₂SO₄深等中处理 1 小时,以活化膜的质子交换能力。

项目使用的硫酸溶液为10%的稀硫酸,且由于处理工序在常温下进行,常温下稀硫酸稳定性好,不考虑其挥发。

⑥清洗:用去离子水彻底清洗膜,至**%**并洗三次,以去除残留的酸此工序产生 W₄清洗废水。

- ⑦组装:将处理好的 Nafion 膜夹在两个 PTFE 板之间,确保密封良好,以形成两个独立的腔室。
- **⑧气体供给:** 在阴极,通过钛气体流动室供给加湿的氧气,氧气流速由质量流量计(MFC)。
- ⑨电化学反应:使用传统的三电极流动池进行电化学 H₂O₂ 的生成,阳极、阴极和参加和极分别连接到多通道电化学工作站。持续监测反应器的输出,确保 H₂O₂ 的稳定生成,记录反应条件和产物浓度,计算产率,采用气相色谱仪测定产物、使

(3) 微晶玻璃

- ①称量~**用电子天平,按照设计的重量配比称量高岭土和金属氧化物粉末。
- ②混合:将称量好的粉末放入混合机或球磨机中,混合均匀,确保各成分充

此工序产生 G11 混合粉尘(颗粒物)。

③熔炼:将混合均匀的粉末装入石墨坩埚中;将坩埚放入石墨炉中,加热至1500°C以上,保持熔融状态,确保所有成分完全熔融;缓慢冷却熔融物,形成玻璃基体。此过程仅有物理过程,不发生化学反应。

④晶化:玻璃基体放入马弗炉中,加热至800-1100°C;在目标温度下保温若干小时(具体时间根据材料特性和晶化要求确定),以促进晶体生长;缓慢冷

— 58 —

却至室温,防止热应力导致的裂纹。此过程仅有物理过程,不发生化学反应。

⑤强化:在熔盐浴设备中,将硝酸钾和硝酸钠混合,加热至350-530°C,形成熔融态盐浴;将晶化后的玻璃浸泡在熔融态硝酸钾钠盐中若干小时,以进行离子交换,增强玻璃表面强度。此过程仅有物理过程,不发生化学反应。

⑥冷却清洗:从盐浴中取出玻璃,缓慢冷却至室温,并用去离子水彻底清洗,去除表面残留的盐。

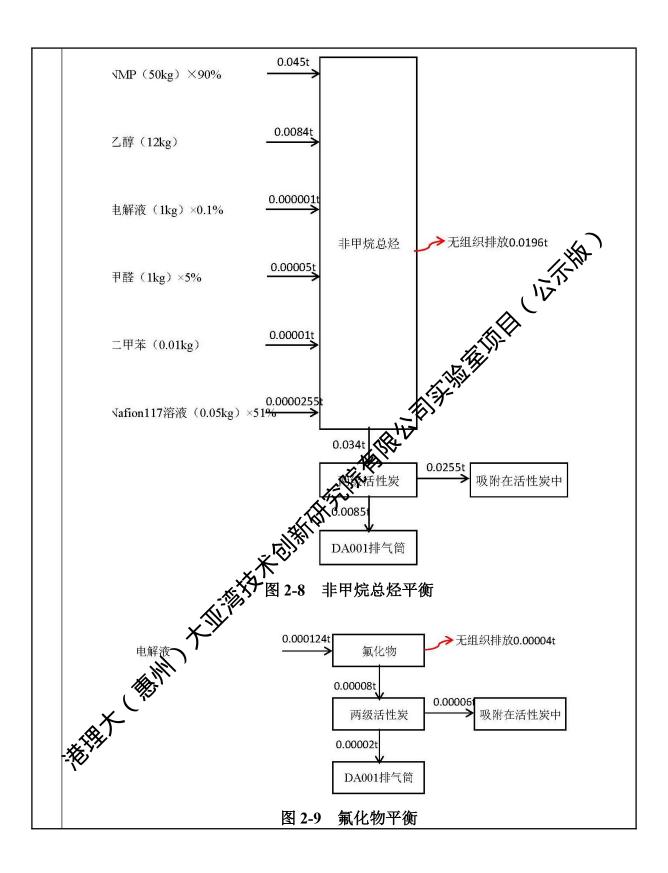
此工序产生 W5 清洗废水。

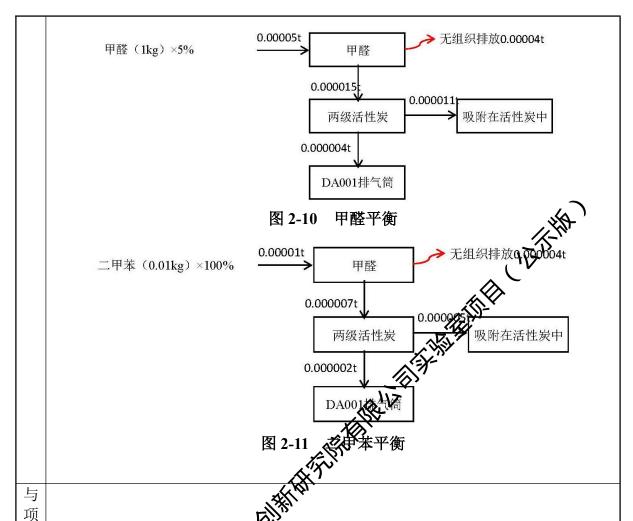
试验工艺流程简介:

根据《建筑玻璃可见光透射比、太阳光直接透射比、太阳能总透射比、紫外线透射比及有关窗玻璃参数的测定》(GB/T2680-2021),为用紫外可见分光光度计,对微晶玻璃的透射比进行测试,试验过程不涉及为学反应,试验过程无污染物产生。

清洗工艺:

②项目 4F、5F,材料与新能源研究中心和绿色与智能制造研究中心的烧杯等实验器材使用后需要清洗;清洗时先使用乙醇对实验器材进行初步冲洗(其中2F 乙醇年量 2.5kg,5F 乙醇年用量 1kg,6F 乙醇年用量 2kg),溶解表面残留物料、再使用清水、纯水分别进行二三次冲洗,自然晾干确保无水分残留。


第 3 项目 6F 的绿色化学与可持续催化研究中心使用 3d 过渡金属和氧化铝等原辅材料,仅需使用清水和纯水进行冲洗即可。


乙醇属于低挥发性有机溶剂,由于乙醇无参照的污染物排放标准,因此以非 甲烷总烃为评价指标分析清洗废气。

此工序产生 W1 清洗废水、G3 清洗废气(NMHC)。

表 2-8 项目产排污环节分析表							
污染因 素	生产车间	产污环节		排放特性/性质	污染因子		
		高性能超薄 电池极片研 发制备	浆料制备	有组织/无组织	G1 颗粒物		
			涂布干燥	有组织/无组织	G2 非甲烷总烃、臭气 浓度		
	5F 新材料与 新能源研究 中心	高性能锂电 池研发制备	注液封装	有组织/无组织	G4、G5 非甲烷总烃、氟化 物(人)		
	1,36	织物基集流 体的研发	硅烷化	有组织/无组织	非国际总烃		
			沉积干燥	有组织/无组织	り 甲醛		
废气		清洗		有组织/无组织	₩ G3 非甲烷总烃		
	4F 绿色与智能制造研究中心	先驱体转化 陶瓷工艺的	溶液配制、 涂层制备	有组织	G8 二甲苯		
		研发	结构图案化	有分识/无组织	G9 颗粒物		
		双氧水反应器	墨水配制 电极制象 干燥	有组织/无组织	G10 非甲烷总烃		
		微晶玻璃	文文 文文 文文 文文 文文 文文 文文 文文 文文 文文 文文 文文 文文	有组织/无组织	G11 颗粒物		
				有组织/无组织	G3 非甲烷总烃		
		生活废水	研发人员生活	排入市政污水管网,纳入惠州市;湾第一水质净化厂,处理达标后,			
	废水	% 浓水	73,774				
	X	清洗废水	设备、试验 器材清洗	作为实验室废液收集后委托有处 资质的单位处理			
W. T.	固废	S1 废边角 料、S2 废胶 粘带、废原 料包装袋 废滤芯、废 RO 膜	研发过程	一般固废	专业回收公司回收		
	固废	废样品	研发过程				
		喷淋废水 废活性炭	废气处理		CODcr、SS 炭、有机废气		
		废试剂包装 和废耗材	研发过程	危险废物	化学品		
		实验室废液	71200		废液、废酸		
	噪声		主要噪声源	为研发设备,间歇	(排放		
		表 2-9	项目物料 ³	 平衡表			

	输入 ^a (t/a)		输出(t/a)				
新材料与新能源 研究中心原辅材 料	0.1181	样品	废样品	0.115405			
绿色化学与可持 续催化研究中心 原辅材料	0.014		有组织排放非甲烷总烃	0.0085			
绿色与智能制造 研究中心	0.062375		有组织排放颗粒物	0.0001			
织物、铝箔、聚酯 PET薄膜、PTFE 板等物料	0.005	废气	有组织排放氟化物	0400002			
/	/		无组织排放非甲烷总烃	0.0196			
/	/		无组织排放颗粒物	0.00005			
/	/	1	无组织排放氟化物	0.00004			
/	/		活性炭吸附的。中烷总	0.0255			
/	/	固废	活性人吸附的氟化物	0.00006			
/	/		水渣	0.00009			
/	/		研发废水、废酸	0.03011			
合计	0.199475	K	合计	0.19947:			
注: a以上输入原料	* COLUMN	P. C.					
	×1						

项目建设地点原为惠州传教大智能科技有限公司,主要从事智能技术的研发与应用、人脸识别系统。指纹识别系统的研发与应用等;惠州广瑞合新材料科技有限公司,主要从事工业胶黏剂、电子材料及产品的研发销售;惠州市大道新材料科技有限公司,主要从事锂离子电池材料的研发销售;广东聚微新材料科技有限公司,主要从事新材料技术研发和销售;广东欧凯新材料有限公司,主要从事化工作化技术的研发、技术咨询、技术服务、技术转让和销售。建设地点不涉及企业生产,不涉及土壤地下水污染重点企业,不存在原有环境污染问题。

目有

关

的原

有

环境

污

染问题

三、区域环境质量现状、环境保护目标及评价标准

1、大气环境

详见大气评价专章。

2、水环境

项目的纳污水体为淡澳河,根据《关于同意实施广东省地表水环境功能区划的批复》(粤府函[2011]29号)可知,该批复未对淡澳河的地表水环境功能区划进行划分,为此参照《惠州大亚湾经济技术开发区生态环境保护"十四年"规划》(惠湾管函[2022]19号)中对淡澳河、响水河的规定,淡澳河、响水河属于 V 类水体,执行《地表水环境质量标准》(GB3838-2002)中 V 水体准。

根据《2023年大亚湾经济技术开发区环境质量状况》《惠州市生态环境局大亚湾经济技术开发区分局,二〇二四年五月》2023年,大亚湾区内坪山河、淡澳河、响水河、柏岗河、岩前河、南边城河、石头河、苏埔河、妈庙河、澳背河、晓联河、大胜河、青龙河、下沙湾、养公坑河、南坑河等 16 条主要河流进行了常规监测,监测频次为: 12

16条河流中,南边灶河、柏木河、岩前河、苏埔河水质为II类,满足《地表水环境质量标准》(GB3838-1002)中II类标准;石头河、响水河、澳背河、晓联河、淡澳河、坪山河龙海、路断面、大胜河、下沙河、养公坑河、南坑河、青龙河等水质为III类,满足《地表水环境质量标准》(GB3838-2002)中III类标准;妈庙河水质为 IV 类,满足《地表水环境质量标准》(GB3838-2002)中 IV 类标准。

综上、项目所在区域地表水环境质量现状良好,淡澳河水质达到《地表水环境繁量标准》(GB3838-2002)中的 IV 类水质标准,满足V类水质目标。

3、声环境

项目厂界周边 50m 范围内不存在声环境保护目标,因此无需监测声环境质量现状。

4、生态环境

本项目位于广东省惠州市大亚湾西区科技创新园科技路5号研发试验楼2

栋,项目租赁惠州大亚湾科技投资有限公司已建孵化楼,不占用新的土地。项目所在区域周边无风景名胜区、自然保护区及文化遗产等特殊保护目标,生态环境不属于敏感区。

5、地下水、土壤环境

项目租赁惠州大亚湾科技投资有限公司已建厂房,厂区地面均为硬化地面,三级化粪池、污水管网和危废暂存间、实验室等设置防渗地坪,不存在土壤、地下水污染途径,故不开展地下水及土壤环境质量现状调查。

1、大气环境

项目大气环境影响评价范围边长 5km,范围内的大气环境保护目标名称及相对位置关系见下表,周边环境保护目标分布图详见附图 4。

表 3-2 项目大气环境保护目标表 表表

	ACCE WHAT GLOCKS HAVE BOOK								
	序号	名称	些 E	标 N	保护	保护 内容	环境功能	相对 厂址 方位	相对厂界距 离/m
					*		X X	77 124	
环境保护目标	1.	星河半岛	114.500130°	22.7 4765 9°	居民	300 人		西南	324
	2.	第七小学	114.501077°	749365°	师生	1000 人		西北	140
	3.	专家公寓	114.500612	22.748289°	居民	200 人		西北	141
	4.	人才公寓	11 4.5024 6°	22.750020°	居民	200 人		北	173
	5.	碧桂园太 东公园、	114.500143°	22.752520°	居民	2000 人		西北	285
	6.	峰	114.498922°	22.744484°	居民	200 人	二类	西南	409
	7. &	如悦春天	114.498058°	22.747356°	居民	300 人	区	西	382
	<u>-</u> ***	海德善园	114.504101°	22.755874°	居民	300 人		东北	842
	9.	玖御府	114.502320°	22.756350°	居民	300 人		北	891
	10.	华南师范 大学附属 惠阳学校	114.485525°	22.769556°	师生	2000 人		西北	2774
	11.	星河丹堤	114.485525°	22.769556°	居民	300 人		西北	2112

	12.	长汀花园	114.479612°	22.770420°	居民	30 人		西北	3341
	13.	新力上园	114.478662°	22.768205°	居民	200 人		西北	3202
	14.	碧桂园翡 翠山	114.483728°	22.763699°	居民	5000 人		西北	2003
	15.	恒鑫御园	114.478707°	22.766145°	居民	100 人		西北	3117
	16.	大亚湾西 区第六小 学	114.478615°	22.765044°	师生	1000 人		西北	2993
	17.	西区医院	114.478476°	22.763523°	医患	500 人		西北、	2945
	18.	隆基绿洲 花园	114.485311°	22.759891°	居民	200 人		严	2003
	19.	东部阳光 花园	114.478269°	22.759317°	居民	300 人	The state of the s	西北	2478
	20.	熊猫国际 新城	114.479111°	22.755830°	居民	5000	SL.	西北	2239
	21.	泰丰花园	114.480946°	22.752869°	居	夕3 00 人		西北	1688
	22.	大亚湾博 雅实验学 校	114.478336°	22.750384	师 生	1000 人		西北	2409
	23.	西区第八 小学	114.479538°	24.48708°	师 生	1000 人		西	2296
	24.	荣盛华府	114.479066°	22.729538°	居民	100 人		西南	2956
	25.	美岸栖庭	114.486160	22.747906°	居民	100 人		西	1657
	26.	紫辰名苑	41 4387434°	22.747648°	居民	50 人		西	1472
	27.	永昶集团 第二生 第	114.481812°	22.746489°	居民	500 人		西南	1999
	28.	冷 水明苑	114.482370°	22.744601°	居民	50 人		西南	2037
	KO).	龙光玖龙 花园	114.484491°	22.746496°	居民	200 人		西南	1667
	30.	永昶集团 第一生活 区	114.485951°	22.744994°	居民	500 人		西南	1599
	31.	响水河畔	114.487116°	22.746448°	居民	200 人		西南	1480
	32.	君豪公寓	114.488031°	22.746459°	居民	200 人		西南	1417

							_		
	33.	惠华花园	114.488970°	22.746429°	居 民	300 人		西南	1303
	34.	龙光玖龙 湾	114.489699°	22.744562°	居民	300 人		西南	1158
	35.	御玺山大 峡谷	114.485064°	22.741815°	居民	500 人		西南	1697
	36.	合生时代 城	114.495964°	22.740270°	居民	500 人		西南	811
-	37.	戴屋	114.478662°	22.768205°	居民	20 人		西南	2055
	38.	荣盛御湖 观邸	114.505277°	22.728898°	居民	300 人		南	1 1 1 1 1 1 1 1 1 1
-	39.	姚田新村	1114.506951°	22.736065°	居民	500 人		西南	1084
-	40.	星辉公馆	114.511328°	22.735979°	居民	100 人	4	(東南	1484
	41.	虎爪村	114.509955°	22.735443°	居民	100 人 公	ST Y	东南	1383
	42.	天喜东方	114.513388°	22.734262°	居民			东南	1608
	43.	海伦堡臻 悦府	114.514590°	22.732116°		200 人		东南	1967
	44.	教师村	114.517303°	22.729	居民	100 人		东南	2358
	45.	海伦堡香 奈花园	114.519934°	25822°	居民	100 人		东南	2744
	46.	金奥中英 文学校	114.519290°	22.727496°	居民	100 人		东南	2695
	47.	丽郡园	114.5 10247 °	22.729256°	居民	100 人		东南	2544
	48.	海惠花园	4 494694°	22.762044°	居民	1500 人		西北	1267
	49.	灿邦新天 地二期	114.498450°	22.758194°	居民	800 人		西北	1126
	50.	海德花园	114.502682°	22.754314°	居民	100 人		北	617
	5.X	仁和美地	114.496631°	22.745087°	居 民	300 人		西南	514
	52.	菩提园	114.491033°	22.758799°	居民	200 人		西北	1501
	53.	金汇上元	114.488288°	22.758455°	居 民	200 人		西北	1748
	54.	惠丰城	114.485048°	22.756674°	居民	500 人		西北	1854
-	55.	花千树苑	114.485649°	22.755366°	居民	500 人		西北	1717

西北	1633
西北	1557
西北	1498
西北	942
西北	586
西北	LEHR5
西北	487
A	520
西	729
西	944
西	1583
西	860
南	473
东南	3099
东南	2391
东南	2605
东南	2322
东南	2791
东南	3041
东南	2031
东南	1190
东南	1968
东南	1206
	西西西西西西西西西西西西南南南南南南南南南

	德丰天麓			居	500			
79.	花园 花园	114.516976°	22.740867°	民	人		东南	1457
80.	灿邦国际	114.524700°	22.745287°	居民	300 人		东南	1993
81.	育英学校	114.518063°	22.744686°	师 生	800 人		东南	1522
82.	岩前村	114.518320°	22.742970°	居民	1000 人		东南	1317
83.	太东天地 花园	114.509694°	22.745416°	居民	100 人		东南	611
84.	新力琥珀 园	114.478662°	22.768205°	居民	300 人		东	(<u>*</u>
85.	大亚湾实 验学校	114.513199°	22.747932°	师 生	1200 人		东	ア 947
86.	二月天	114.513435°	22.743297°	居民	300 人		(東南	1023
87.	凯旋城	114.478662°	22.768205°	居民	1500 人 公	AT!	东	1289
88.	天铭公馆	114.512555°	22.745829°	居民	ST.		东南	941
89.	天铂公馆	114.513500°	22.745528°		100 人		东南	1074
90.	凯旋公馆	114.514315°	22.745	居民	100 人		东南	1156
91.	十月花	114.513156°	0678°	居民	400 人		东北	956
92.	天悦龙庭	114.517448°	22.753124°	居民	800 人		东北	1374
93.	澳头第二 小学	114.510080	22.754412°	师生	1200 人		东北	1836
94.	时代花园	44820495°	22.752524°	居民	500 人		东北	1755
95.	中大惠亚	114.524228°	22.752996°	医患	1500 人		东北	2024
96.	尚东悦城	114.523657°	22.749090°	居民	2000 人		东北	1958
×5.5	, 听涛雅苑	114.526703°	22.755098°	居民	20 人		东北	2525
98.	中央公园	114.526489°	22.752952°	居民	50 人		东北	2432
99.	新力东园	114.526446°	22.7501634°	居民	100		东北	2400
100	苏村	114.526317°	22.743640°	居民	10 人		东南	2297

2、声环境

本项目厂界外50米范围内无声环境保护目标。

3、地下水环境

厂界外 500 米范围内无地下水集中式饮用水水源和热水、矿泉水、温泉等特殊地下水资源。

4、生态环境

项目不新增用地,不存在生态环境保护目标。

1、大气污染物排放标准

①项目实验室产生的颗粒物、二甲苯、甲醛、氟化物有组织《DA001》排放执行《大气污染物排放限值》(DB44/27-2001)表 2 第二时第二级标准;非甲烷总烃有组织(DA001)排放执行《固定污染源挥发发发机物综合排放标准》(DB44/2367-2022)表 1 挥发性有机物排放限值:"气浓度有组织(DA001)排放执行《恶臭污染物排放标准》(GB14554-93)表 2 恶臭污染物排放标准值。

②颗粒物、二甲苯、非甲烷总烃、氟化物厂界无组织排放执行《大气污染物排放限值》(DB44/27-2001)第二时经光组织排放监控点浓度限值;甲醛厂界无组织排放执行《固定污染源挥发处剂机物综合排放标准》(DB44/2367-2022)表4企业边界 VOCs 无组织排放设值;臭气浓度厂界无组织排放执行《恶臭污染物排放标准》(GB14554)表1二级标准新扩改建限值。项目厂内有机废气还应执行《固定污染源域》、性有机物综合排放标准》(DB44/2367-2022)表3厂区内VOCs 无组织排放限值。

具体的表。

表 3-3 废气污染物排放标准一览表

执行标准	污染	最高允许排 放浓度	排气筒高度	最高允许 排放速率	无组织技	非放监控浓度 限值
10人11 40VIE	物	(mg/m ³)	(m)	(kg/h) 二级	监控点	浓度 (mg/m³)
	二甲苯	70		1.72 ^b	周界外	1.2
《大气污染物排放限 值》(DB44/27-2001)	颗粒 物	120	26	6.66 ^b	浓度最 高点	1.0
	甲醛 25			0.43 ^b	I⊨1 yyy	/

	氟化 物	9.0		0.17 ^b		0.02
	非甲 烷总 烃	/		/		4.0
执行标准	污染 物	排放限值 (mg/m³)	排气筒高度	-		非放监控浓度 限值 浓度
	,,,		(m)		监控点	(mg/m^3)
《固定污染源挥发性 有机物综合排放标准》 (DB44/2367-2022)表	非甲烷总	-	-	-	厂区 (监处 Ih平 均浓	K-8.0
3 厂区内 VOCs 无组织 排放限值	烃	-	-	的茅塘	区 (监 点 点 之 (监 (定 (次 (度 (度 (度 (度 () () () () () ()	20
执行标准	污染 物	排放限值(无量纲)	高度 (m)	-	无组织; 监控点	非放监控浓度 限值 浓度(无量
《恶臭污染物排放标准》(GB14554-93)	臭气 浓度	-13840g ₁	26	-	企业边 界	纲) 20
执行标准	泛红	排放限值	排气筒高度	_	无组织	非放监控浓度 限值
7人11 4小年		(无量纲)	(m)		监控点	浓度 (无量 纲)
《固定污染源挥发性 有机物综合排放标 准》	非甲 烷总 烃	80	26	-	企业边 界	-
(DB44/2022)	甲醛	-	-	-) 9F	0.1
			l	L	l	

排气筒(DA001)高度为 26m, 臭气浓度排放限值按照内插法计算, 为 6000+(15000-6000)/(35-25)*(26-25)=6900。

b.《大气污染物排放限值》(DB44/27-2001)4.3.2.3 规定:"排气筒高度除应遵守表列排放速率限值外,还应高出周围 200m 半径范围的建筑 5m 以上,不能达到该要求的排气筒,应按其高度对应的排放速率限值的 50%执行",根据现场勘察,项目 200 米范围内最高的建筑物为项目西面的中润达大厦,高度约为 168m,项目排气筒高度设置为26m,二甲苯、颗粒物、甲醛、氟化物排放速率按照其高度限值的 50%执行。

2、水污染物排放标准

项目生活污水依托孵化楼化粪池处理达到广东省地方标准《水污染物排放限 值》(DB44/26-2001)第二时段三级标准后通过市政管网纳入惠州大亚湾第一水 质净化厂。

惠州大亚湾第一水质净化厂处理出水的 CODer、氨氮执行《地表水环境质量 标准》(GB3838-2002)IV 类标准, 其余指标执行《城镇污水处理厂污染物排放 标准》(GB18918-2002)一级标准的 A 标准和广东省地方标准《水污染物排放限 值》(DB44/26-2001)第二时段一级标准中的较严者后排入淡澳河。

表 3-4 废气污染物排放标准一览表

值》(DB44/26-20				K 考 后 排 λ		~							
			庄门门(14人)	4/11/11/1	伙厌的。 /	AH.							
具体水污染物	排放标准见	L下表。				12							
表 3	6-4 废气污	5染物排放	标准一览表	支 (单位	mg/L)								
	值》(DB44/26-2001)第二时段一级标准中的较严者后排入淡澳河。 具体水污染物排放标准见下表。 表 3-4 废气污染物排放标准一览表 (单位: mgL) 排放标准 COD _{cr} BOD ₅ 氨氮 SS TN TP												
排放标准	COD _{cr}	BOD ₅	氨氮	SS)- TN	TP							
广东省地方标准													
《水污染物排放限				ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ									
值》	500	300	NA PARTIE	A 100	/	/							
(DB44/26-2001)			113	Y '									
第二时段三级标准			W.V										
本项目间接排放标	500	300		400	/	/							
准		^<											
《地表水环境质量		1	X .										
标准》	30	\.\(\delta\)\(\d	1.5	/	_	_							
(GB3838-2002)		(\$\f\)											
IV 类标准	57	<u>Ø</u>),,											
《城镇污水处理厂	×木	† `											
污染物排放标准》	\$\$\frac{1}{2}\$\fra	10	5	10	15	0.5							
(GB18918-2002)	AT TO				-								
一级标准的 A 标准													
广东省地方标准													
《水污染物排放限			4.0		,	,							
值》	90	20	10	60	/	/							
(DB44/2 62 001)													
第二时段一级标准													
惠州大亚湾第一水	20	40		10									
上海净化厂直接排放	30	10	1.5	10	15	0.5							
- ★ 标准													

3、噪声排放标准

噪声排放执行《工业企业厂界环境噪声排放标准》(GB12348—2008)中 2 类标准: (昼间≤60dB(A)、夜间≤50dB(A))。

4、固体废物排放标准

固体废物管理应遵照《中华人民共和国固体废物污染环境防治法》(2020年修正)、《广东省固体废物污染环境防治条例》(2019年本)、《固体废物分类与代码目录》(2024年版)、《固体废物鉴别标准 通则》(GB34330—2017)的相关规定。一般工业固体废物在厂内采用库房或包装工具贮存,贮存过程应满足相应防渗漏、防雨淋、防扬尘等环境保护要求。危险废物执行《危险废物贮存污染控制标准》(GB18597-2023)、《国家危险废物名录》(2025年版)。

项目污染物排放总量控制指标如下。

总量

控

制

指

标

表 3-7 项目总量控制建议指标单位: t/a

 类别
 指标
 项目排放量(t/a)
 总量控制(t/a)

 废水量
 1288.152t/a
 1288.152t/a

 生活污水
 CODer
 0.0515t/a
 0.0515t/a

 NH3-N
 0.006g/a
 0.0026t/a

 废气
 VOCs(以 NMHC 计,含二甲苯、甲醛)
 0.0281t/a
 0.0281t/a

备注: 1.废水经市政污水管网排入惠州大亚湾第一条净化厂处理, (COD、NH₃-N 排放浓度分别按 40mg/L、2mg/L 测算);

2.项目不涉及 NOx 排放, 无需申请多关气污染物总量控制指标。

— 73 —

四、主要环境影响和保护措施

项目租赁已建厂房进行研发试验,无基建施工活动,只需进行设备的安装, 其环境影响很小,施工期内需要做好噪声防护措施。

噪声防护措施:

- (1) 尽量选用低噪声机械设备或带减振、消声的设备。
- (2) 应合理安排施工时间,制订施工计划时,应尽可能避免大量的高噪声设备同时施工,并对设备进行定期保养,严格按照操作规范操作。
- (3)施工运输车辆进出应合理安排,压缩工区汽车数量和行车**密**度,控制汽车鸣笛。
- (4)合理控制施工时间,禁止在白天休息时间(12:00-1400)及夜间(22:00-6:00) 进行可能产生噪声扰民问题的设备安装。

施工噪声影响是暂时的,施工结束后便消失

采取以上措施可有效地控制施工期噪声**对**围环境的影响,对周围环境影响较小。

一、废气

详见大气专项评价。

- 二、废水
- 1、废水污染源分析

① 生产废水

项目清洗水水作为实验室废液收集后委托有处理资质的单位处理。

项目喷淋塔用水循环使用,由于废气中的颗粒物会沉降在喷淋塔中,导致水中 SS T 盐分升高,同时甲醛、乙醇等水溶性 VOCs 的吸收,导致水中 CODcr 升高,原对喷淋效果,因此喷淋水使用一段时间后需要进行更换。换水频次与水质直接相关,由于颗粒物、甲醛、乙醇等产生量很少,喷淋循环水水质较好,且无需频繁捞渣,拟每半年更换一次,更换量 2t/a,更换的喷淋塔废水作为危废委托有处理资质的单位处理。

根据项目给排水分析, 纯水年用量 0.152t, 纯水制备率 50%, 则消耗自来水

期环

境影

响

和保

护

措施

0.304t, 纯水制备浓水产生量 0.152t/a。参考《李长荣(惠州)高新材料有限公司常规检测报告》(报告编号: A4A120102B21T)中浓水数据,项目浓水污染物产生浓度为 pH7.2、COD_{cr}13mg/L、SS6mg/L、氨氮 0.215mg/L、总磷 0.02mg/L。项目浓水不经预处理即可达到广东省地方标准《水污染物排放限值》(DB44/26-2001)第二时段三级标准。因此,项目浓水直接排入市政污水管网,纳入惠州市大亚湾第一水质净化厂,处理达标后尾水排入淡澳河。

②生活污水

项目总员工数 50 人,均不在项目内食宿。根据广东省地方标准《AAX定额第3部分:生活》(DB44/T1461.3-2021),表 2 居民生活用水定额表—城镇居民—小城镇,用水定额为 140L/(人•d),则生活用水量为 1610c—由市政管网供给。生活污水根据《排放源统计调查产排污核算方法和系数。从为日生活用水量 ≤150 升/人•天时,污水按用水量 0.8 计,则项目生活,从排放量为 5.6t/d(1288t/a)。

参照《排水工程(第四版,下册)》"典型之活污水水质"中"中常浓度水质",生活污水产生浓度分别为 COD_{Cr}: 260元人、BOD₅: 130m/L、NH₃-N: 30mg/L、SS: 200mg/L、总氮: 20mg/L、总磷: 元次/L。项目生活污水经三级化粪池处理后排入市政污水管网,纳入惠州市大次湾第一水质净化厂,处理达标后尾水排入淡澳河。

根据《给水排水设计》"典型的生活污水水质"生活污水三级化粪池污染物去除率一般为 Cor. 15%、BOD₅: 9%、SS: 30%、氨氮: 3%、总氮: 3%、总磷 3%,项目生活污水经三级化粪池预处理后可以达到广东省地方标准《水污染物排放限值》(DB44/26-2001)第二时段三级标准。

表 4-1 项目废水污染物源强核算结果一览表

- <u>*</u> **	% /	污染物产生	情况	治	理措施					污染物排放	情况
-	· 污染 物种 类	产生量 t/a	产生 浓度 mg/L	治理工艺	治理效率	是否为可行技术	废水 排放 量 t/a	排放方式	排放去 向	排放量 t/a	排放 浓度 mg/L

	CODcr	0.3349	260		15					0.0386	30
	BOD ₅	0.1674	130	三级化粪池	9				惠州市	0.0129	10
生活	SS	0.2576	200	级	30	是	1288	间接	大亚湾	0.0129	10
污水	NH ₃ -N	0.0386	30	粪	3	疋	1200	排放	第一水 质净化	0.0019	1.5
	TN	0.0064	5	池	3)	0.0193	15
	TP	0.0258	20		3					0.0006	_ 0.5
纯	CODcr	0.0000018	13						惠州市	0.00000	13
水制	SS	0.0000009	6	,	,	,	0.152	间接	大亚湾第一水	0.0000009	6
备浓	氨氮	0.00000003	0.215	/	/	/	0.132	排放	质净(0.00000003	0.215
水	总磷	0.000000003	0.02	三级 30 化 粪 3				A STATE OF THE PARTY OF THE PAR	0.000000003	0.02	

2、废水排放口情况分析

表 4-2 项目废水排放口工览

	排放方式	排放 去向	排放规 律	排放口 名称及 编号	地震學标	排放口类型	排放标准
生活 污水、浓水	间接排放	惠市亚第水净厂	间放期量定规不冲排 斯排流移光但于型。	W001 生活污 水排放 口	114.502136° 22.748024°	一般排放口	广东省地方标准《水污染物排 放限值》(DB44/26-2001)第 二时段三级标准

备注: 生活污水间接排放可不开展自行监测。

3、废水污染防治措施可行性分析

- (1) 生活污水依托孵化楼化粪池处理可行性

项目生活污水依托孵化楼三级化粪池预处理达到广东省地方标准《水污染物排放限值》(DB44/26-2001)中第二时段三级标准后通过市政污水管网排入惠州大亚湾第一水质净化厂。项目所在孵化楼已设有三级化粪池,且有完善的污水管网,因此本项目生活污水可依托孵化楼化粪池处理是可行性的。

(2) 惠州大亚湾第一水质净化厂接纳本项目废水的可行性分析

惠州市大亚湾第一水质净化厂位于惠州市大亚湾中心区澳头镇黄鱼涌村田澳背疏港大道西侧,主要收集大亚湾西区东部区域、中心区、澳头、湾港区的生活污水。大亚湾第一水质净化厂总设计规模 25 万 m³/d, 分多期建设,目前已建设三期工程, 一期工程处理能力 3 万 m³/d, 二期工程处理能力 3 万 m³/d(已建为 2 万 m³/d, 1 万 m³/d 在建),三期工程处理能力 8 万 m³/d。一期工程和二期工程已建设并投入运营,三期工程已获得审批并建设完成。通过市政管网收集来的废水通过惠州大亚湾第一水质净化厂配水井,分配至一、二、三期工程进行处理、惠州市大亚湾第一水质净化厂排放标准为 CODer、氨氮执行《地表水环境质量标准》(GB3838-2002)IV 类标准,其余指标执行《城镇污水处理》方染物排放标准》(GB18918-2002)一级标准的 A 标准和广东省地方标准,水污染物排放限值》(DB44/26-2001)第二时段一级标准中的严者后排入澳河。

①污水厂简介

a.一期工程

惠州大亚湾第一水质净化厂一期,设设计处理能力 3 万 m³/d,采用"改良型氧化沟+高密度沉淀及回转精密过滤深度处理"工艺,主要收集大亚湾西区东部区域、中心区、澳头、荃湾港区的主活污水,由惠州大亚湾绿科水质净化有限公司负责运营工作。

一期工程于 200 5 月通过环保审批(惠市建环审[2004]185 号),并于 2009年通过环保竣工验收。水质净化厂运营单位于 2017年进行了提标(增加混凝沉淀和过滤工产,提标后出水水质执行《城镇污水处理厂污染物排放标准》(GB18918-2002)的一级 A标准、广东省地方标准《水污染物排放限值》(D***/26-2001)第二时段一级标准的较严值的要求。提标工程于 2017年4月通过了大亚湾环保局审批(惠湾建环审[2017]30号),于 2018年8月通过建设单位环保竣工自主验收,现已投入运行。一期提质扩量工程于 2022年9月审批,对现有厂区内一期工程进行提质扩量,不新增用地,处理规模由3万立方米/天提升至3.6万立方米/天。

b.二期工程

二期工程设计处理能力 2 万 m³/d,采用"改良型氧化沟法"工艺,服务范围包括大亚湾澳头老城区、中心区,响水河片区、猴仔湾及上杨片区等区域。该工程由惠州大亚湾绿科第六水质净化有限公司负责运营工作,设计出水执行《城镇污水处理厂污染物排放标准》(GB18918-2002)的一级 A 标准、广东省地方标准《水污染物排放限值》(DB44/26-2001)第二时段一级标准的较严者。

二期工程已于 2018 年 7 月通过环评审批(惠湾建环审[2018]35 号), 并无 2019 年 10 月通过建设单位环保竣工自主验收,已投入运行。

2022年6月二期水质净化厂进行扩容提标对现有氧化沟进行改造,设计处理能力3万m³/d(扩容1万m³/d),主要改造内容为现状氧化沟改。AAO池并采用底部曝气,重新调整缺氧、好氧池比例,氧化沟池表曝机等设备拆除、曝气系统安装、清池等;将二沉池改造为MBR膜池,新建膜加入,鼓风机房及变配电间等,氧化沟前端新增膜格栅。

尾水排放标准为: CODcr、氨氮执行《龙龙水环境质量标准》(GB3838-2002) IV 类标准,其余指标执行《城镇污水龙龙厂污染物排放标准》(GB18918-2002) 一级标准的 A 标准和广东省地方旅龙《水污染物排放限值》(DB44/26-2001)第二时段一级标准中的较严者。 期提质扩量工程于 2022 年 9 月审批,对现有厂区内二期工程进行提质扩量、不新增用地,处理规模由 2 万立方米/天提升至 3 万立方米/天,提质扩量后、方范围不变。

c.三期工程

程于 2020 年 6 月通过环评审批(惠市环(大亚湾)建[2020]24 号), 2021 年 6 月 30 日 投入运营。

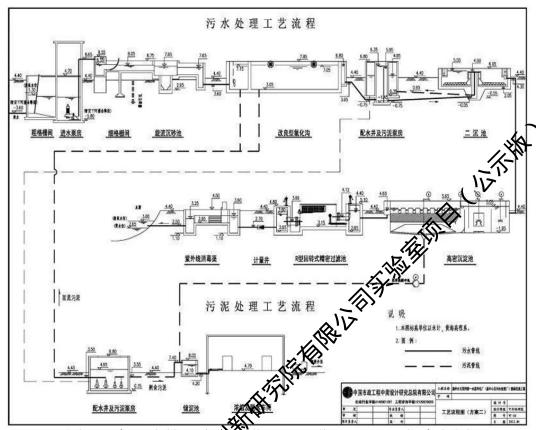


图 4-1 惠州大亚湾流水质净化厂(一期)处理工艺流程图

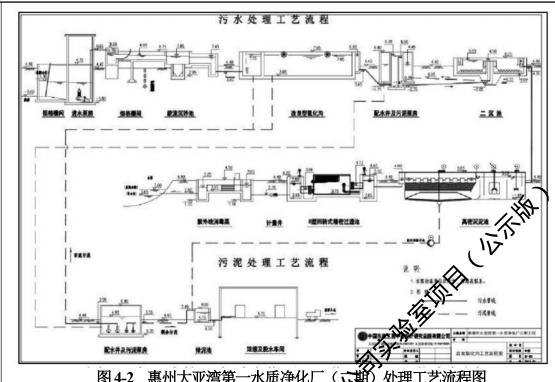


图 4-2 惠州大亚湾第一水质净化厂

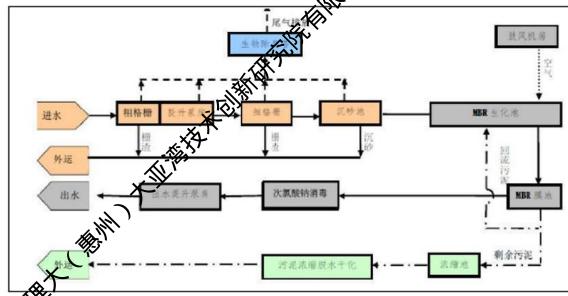


图 4-3 惠州大亚湾第一水质净化厂(三期)处理工艺流程图

表 4-3 污水处理厂进、出水水质指标

项目	单位	CODcr	BOD ₅	氨氮	SS	TN	TP
DB44/26-2001 第二时段三级 标准	mg/L	500	300	/	400	/	/
出水标准	mg/L	30	10	1.5	10	15	0.5

项目位于惠州大亚湾第一水质净化厂纳污范围,详见附图 10。生活污水经三

级化粪池预处理后,纳入市政污水管网,可达到广东省《水污染物排放限值》(DB44/26-2001)第二时段三级标准,目前大亚湾第一水质净化厂一、二、三期处理能力共 14.6 万 t/d,按雨天最大处理量,理论剩余处理能力为 6000t/d。本项目新增纳管的生活污水 5.6m³/d,仅占污水处理厂处理余量 0.6 万 t/d 的 0.09%,因此仍有余量接纳本项目污水。

4、废水环境影响分析

项目生活污水和浓水排放量为 5.6t/d,即 1288.152t/a。项目所在区域已完成与惠州大亚湾第一水质净化厂截污管网的接驳工作,项目生活污水经三级化粪池预处理达到广东省《水污染物排放限值》(DB44/26-2001)第二时段三级标准后,通过市政管网排入惠州大亚湾第一水质净化厂深度处理,经验理后尾水 CODer、氨氮可以达到《地表水环境质量标准》(GB3838-2002),类标准,其余指标可以达到《城镇污水处理厂污染物排放标准》(GB1800-2002)一级标准的 A 标准和广东省地方标准《水污染物排放限值》(DB44/26-2001)第二时段一级标准中的较严者。可有效控制和减缓本项目生活泛彩对周边水环境的影响。

5、监测要求

根据《排污单位自行监测技术》南总则》(HJ819-2017)的相关要求,单独排入公共污水处理系统的生活,水无需开展自行监测。

三、噪声

(1) 源强核算

序	建筑	主观的 在 4 年	声源源强	空	间相 置/1	对位 m	 距室内边	室内边界声	>=	建筑物插入损	建筑物量	室外噪声
号	物名 称	声源名称	(声压级/距声源距 离)(dB(A)/1m)	X	Y	Z	界距离/m	级/dB(A)	运行的投入	产物插入损) 失/dB(A)	声压级 /dB(A)	建筑物外 距离/m
1		超纯水机	65	34	15	17	5	58.01	\(\rangle\)	10	42.01	1
2		等离子清洗 机及真空泵	75	34	15	17	5	68.01	19-10	10	52.01	1
3		手套箱	60	13	5	17	5	53.0		10	37.01	1
4		搅浆机	70	17	15	17	5	68=81.		10	47.01	1
5		涂布机	70	17	16	17	5	63. 01		10	47.01	1
6		鼓风烘箱	75	18	15	17	5	1 1768.01		10	52.01	1
7		辊压机	65	18	16	17	5 💉	58.01		10	42.01	1
8		切片机	65	19	15	17	TO THE PARTY OF TH	58.01		10	42.01	1
9	新材	电子天平	60	19	16	17	15/30	53.01	昼间 (8h/d)	10	37.01	1
10	料与	真空烘箱	75	23	15	17	(7) 5	68.01		10	52.01	1
11	新能	注液器	60	23	16	Z/Z/K	5	53.01		10	37.01	1
12	源研究中	纽扣电池封 装机	70	24	15	37	5	63.01		10	47.01	1
13	心	软包电池封 装机	70	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	16	17	5	63.01		10	47.01	1
14		电池测试低 温箱	60 XI	36	15	5.5	5	53.01		10	37.01	1
15		电池测试恒 温箱	(A)	36	15	5.5	5	53.01		10	37.01	1
16		电池测试通 道		36	16	5.5	5	53.01		10	37.01	1
17		电化学工作 站	60	36	16	5.5	5	53.01		10	37.01	1
18		万能力学试	65	37	15	5.5	5	58.01	1	10	42.01	1

		교사					I	I	I	I		
		验机										
19		电阻率测试 仪	60	37	16	5.5	5	53.01		10 10 10	37.01	1
20		磁力搅拌	75	15	5	21.3	5	68.01		1 0	52.01	1
21	归在	高压反应釜	70	16	5	21.3	5	63.01	112	10	47.01	1
22	绿色 化学	管式炉	65	17	5	21.3	5	58.01		10	42.01	1
23	化子 与可	鼓风烘箱	65	18	5	21.3	5	58.01		10	42.01	1
24	持续	高压固定床 反应器	65	19	5	5.5	5	58.01	小师	10	42.01	1
25	催化 研究	气相色谱	60	17	15	5.5	5	53,61 4,51		10	37.01	1
26	が九 中心	气质联用仪	60	17	15	5.5	5	N. F.		10	37.01	1
27	ተ _"	热重分析仪	65	17	16	5.5	5	88.01		10	42.01	1
28		超纯水机	65	20	16	21.3	5 💫	V 58.01		10	42.01	1
29		磁力搅拌器	75	17	5	13.05	5	68.01		10	52.01	1
30		旋涂仪	60	17	6	13.05	松	53.01		10	37.01	1
31		光刻机	75	18	5	13.05	1500 S	68.01		10	52.01	1
32		真空干燥箱	75	18	6	13,00	5	68.01		10	52.01	1
33		管式炉	75	19	5	KKYS	5	68.01		10	52.01	1
34	绿色	钛气体流动 室	70	17	*F	3.05	5	63.01		10	47.01	1
35	与智 能制	三电极流动 池	60	-	16	13.05	5	53.01		10	37.01	1
36	造研 究中	混合机/球磨机	80 -	13	15	5.5	5	73.01		10	57.01	1
37	心	石墨炉	7,31	19	5	5.5	5	68.01		10	52.01	1
38		马弗炉	7311	19	6	5.5	5	68.01		10	52.01	1
39		熔盐浴设备	(** / 5	19	6	5.5	5	68.01		10	52.01	1
40		温度控制器	X 60	19	6	5.5	5	53.01		10	37.01	1
41		超纯水机	65	13	5	13.05	5	58.01		10	42.01	1
42		多通道电 径 学工作站	60	13	15	13.05	5	53.01		10	37.01	1

43	万能力学试 验机	65	13	16	13.05	5	58.01	10	42.01	1
44	气相色谱仪	60	13	17	13.05	5	53.01	3/4 1/0	37.01	1
45	紫外可见分 光光度计	60	13	17	13.05	5	53.01	L.	37.01	1

备注: ①空间相对位置的 Z 代设备相对地面的离地高度。②以实验室西南角为坐标原点(0, 2)。

表 4-5 项目主要设备噪声源强一览表 (金字)

- 1				77 77 77 77 77 77 77 77 77 77 77 77 77	- >1+> +/+·+-		47 ' .		
	序号	声源名称	型号	声源源强 (声压级/距声源距离)(dB(A)/1m)		对位置机		声源控制措施	运行时段
	46	废气处理设 备及风机	点源	声源源强 (声压级/距声源距离)(dB(A)/1m) 80 代表设备相对地面的离地高度。②以实	13	12	25.2	设备减振	昼间 (8h/d)
	备注	: 空间相对位	置的Z	代表设备相对地面的离地高度。②以实	验室西域为	坐标原点((0, 0,	0) .	
					TIAN TO THE REAL PROPERTY OF THE PARTY OF TH				
				.43	1/20				
				Lift.)				
				~ * *					
				××**					
				X-9					
				· Chu					
				×					
				<u>(</u>)_					
			- <u>*</u>	•					

(2) 影响分析

根据《环境影响评价技术导则——声环境》(HJ2.4-2021)的要求,可选择点声源预测模式,来模拟预测项目主要声源排放噪声随距离的衰减变化规律。

①对室外噪声源主要考虑噪声的几何发散衰减及环境因素衰减:

$$L_p(r) = L_p(r_0) - 20\lg(r/r_0)$$

式中: Lp(r)—预测点处的声压级, dB(A);

Lp (r0) —参考位置 r0 处的声压级, dB(A);

r—预测点距声源的距离, m;

r0—参考点距声源的距离, m;

②对室内噪声源采用室内声源噪声模式并换算成等效的产产源

$$L_{p2}=L_{p1}-(TL+6)$$

$$L_{p1}=L_{w}+10\lg\left(\frac{Q_{p1}+4}{R}\right)$$

式中:

Lp1—靠近开口处(或窗户)室内 倍频带的声压级或 A 声级, dB;

 L_{p2} —靠近开口处(或窗户)某倍频带的声压级或 A 声级,dB;

TL—隔墙(或窗户)倍频带或A声级的隔声量,dB。

L_w—点声源声功率(A 计权或倍频带), dB;

Q—指向性因数—通常对无指向性声源,当声源放在房间中心时,Q=1;当放在一面墙的中,对,Q=2;当放在两面墙夹角处时,Q=4;当放在三面墙夹角处时,Q=8;

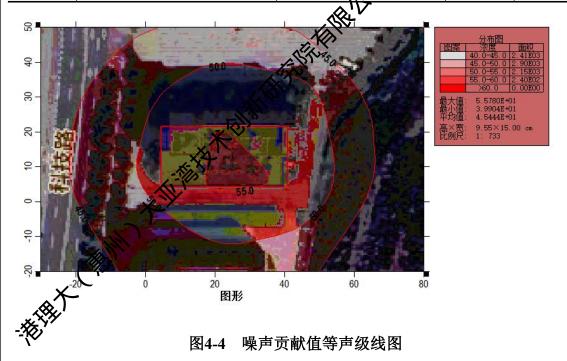
房间常数; $R=S\alpha/(1-\alpha)$, S 为房间内表面面积, m^2 ; α为平均吸声系数; —声源到靠近围护结构某点处的距离, m。

Q为1,每层实验室内表面面积S为2137.77,根据《环境工程手册 环境噪声控制卷》(2000年),混凝土墙粗糙(500HZ)平均吸声系数取0.31,则房间常数R为960。

③对两个以上多个声源同时存在时,其预测点总声压级采用下面公式:

$$L_{\rm eq} = 10 \lg \left(10^{0.1 L_{\rm eqg}} + 10^{0.1 L_{\rm eqb}}\right)$$

式中:


Lea——预测点的总等效声级, dB(A);

Leag—建设项目声源在预测点产生的噪声贡献值, dB(A);

Leqb—预测点的背景噪声值, dB(A)。

通过上述预测模式,在采取措施后预测出项目声源在项目边界的噪声贡献值, 红结果下表: 表 4-6 噪声源采取治理的边界噪声预测结果单位: dB (A) 计算结果下表:

序号		噪声贡献值 4	标准值			
厅 与		一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	全 国	夜间		
1#	东侧厂界外 1m 处 1#	52.61	60	50		
2#	南侧厂界外 1m 处 2#	55.69	60	50		
3#	西侧厂界外 1m 处 3#	51.0	60	50		
4#	北侧厂界外 1m 处 4#	54.38	60	50		

由上表可知,项目昼间噪声贡献值满足《工业企业厂界环境噪声排放标准》 (GB12348-2008) 2类排放限值要求, 夜间不进行研发试验。因此项目对周围声环

(3) 降噪措施:

境影响较小。

针对本项目情况,建设单位采取以下措施:

- 1)从声源上控制,在设备选型上,选用优良的符合国家噪声标准的低噪声设备,各机泵的电机选用噪声较低的防爆电机,风机选用低噪声叶片。
- 2) 合理布置设备位置。强噪声设备尽量作密闭处理,保证房间的密闭性,且尽量远离厂界。
- 3)采用隔声降噪、局部消声技术。对于产生噪声较大的独立设备,如风机可采用固定或密封式隔声罩以及局部隔声罩,将噪声影响控制在较小范围内。同时离心风机采用减震垫,能有效的降低噪声污染。
- 4)加强管理建立设备定期维护、保养的管理制度,以防止设备故障形成的非生产噪声,同时确保环保措施发挥最有效的功能;加强职工环境意识教育,提倡文明生产,防止人为噪声;对于流动声源(汽车),应强化发发管理制度,严禁鸣号,低速行驶,最大限度减少流动噪声源。
 - 5)安排专人定期维护机械设备,确保其正常证转。
- 6) 重视实验室的使用状况,尽量采用**为形**式,少开门窗,防止噪声对外传播。

(3) 监测要求

参照《排污单位自行监测发指南总则》(HJ 819-2017),项目噪声监测计划见下表。

表 4-7	品書	白行	瓜刈	要求
1X 4-1	1996 P-1	H11	计时 火 火	マル

监测点位	血测指标	监测值	监测频次	执行排放标准
厂界东、南、西 北各布设1 测点	昼间噪声	等效连续 A 声级	每个季度一次 (昼间)	《工业企业厂界环 境噪声排放标准》 (GB12348-2008) 中的2类标准

四、水粉水废物

本项目产生的固体废物包括一般固体废物、危险废物和生活垃圾。

表 4-8 项目固体废物排放情况汇总表

产污环节	固废名称	性质	产生量	处理方式
研发过程	S1 废边角料、S2 废胶粘带、废原料 包装袋	一般固体废物	0.005t/a	专业回收公司回收
如及过往	废滤芯、废 RO 膜	双回 件 及 70	0.01t/a	专业四权公司四权
	水渣		0.00009t/a	
	废样品		0.115405t/a	

	喷淋废水		2t/a	
及《处垤	废活性炭		17.31t/a	
研发过程	废试剂包装和废 耗材	危险废物	0.06t/a	交由有危废处理资质单位处理
	实验室废液		0.3515t/a	

(1) 一般固体废物

①S1 废边角料、S2 废胶粘带、废原料包装袋等

实验室会产生 S1 废极片边角料、S2 废胶粘带和炭黑等原料包装袋,产生量约为 0.005t/a,根据《固体废物分类与代码目录》(生态环境部公告 2024 年第 号),属于 SW17 可再生类废物,代码为 900-001/003-S17 废钢铁和废塑料、发由专业回收公司回收利用。

②废滤芯、废 RO 膜

实验室纯水制备会产生废滤芯和废 RO 膜,产生量约 0.01t/a。根据《固体废物分类与代码目录》(生态环境部公告 2024 年第 4 7 ,属于 SW59 其他工业固体废物,代码为 900-009-S59 废过滤材料,交应 200 回收公司回收利用。

③水渣

实验室使用喷淋塔处理粉尘会产生。渣,定期捞渣,根据工程分析产生量为0.00009t/a。根据《固体废物分类》、码目录》(生态环境部公告 2024 年第 4 号)属于 SW59 其他工业固体废物、代码为 900-099-S59,交由专业回收公司回收利用。

④废样品

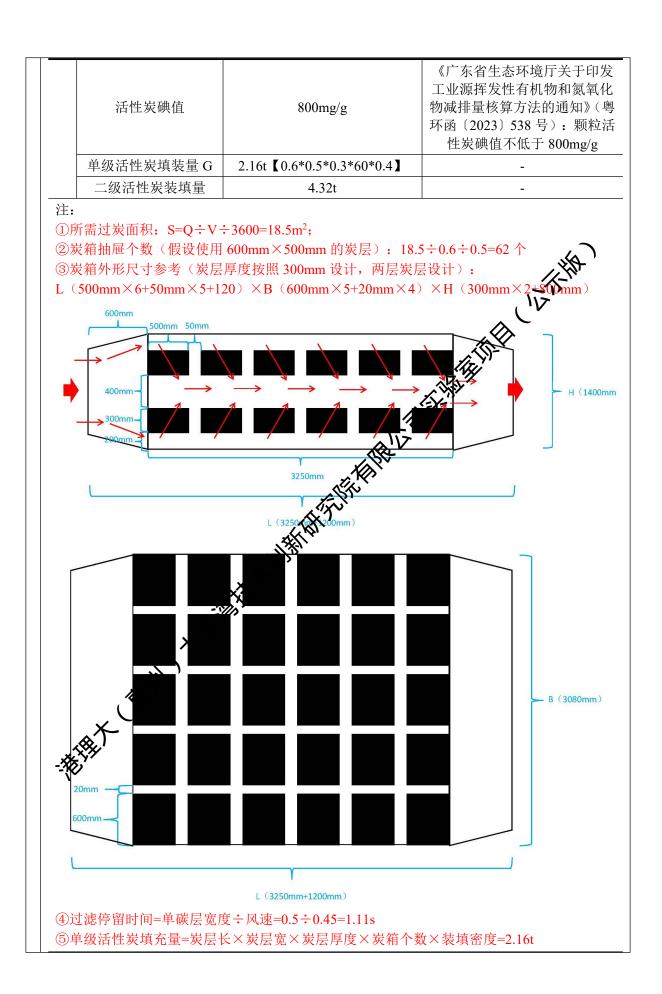
项目试验成果先为样品再一楼展厅展览,后作为固体废物处理,废样品产生量为 0.115405t/a。根据《固体废物分类与代码目录》(生态环境部公告 2024 年第 4号),属于 92 实验室固体废物,代码为 900-001-S92,交由专业回收公司回收利用。

) 生活垃圾

、项目劳动定员 50 人,均不在项目内食宿,人均垃圾产生量按 0.5kg/d 计算,则垃圾产生量为 0.025t/d(5.75t/a)。

(3) 危险废物

①喷淋废水


喷淋水循环使用按需补充,使用一段时间后需要进行更换,每半年更换一次,

更换量 2t/a, 属于《国家危险废物名录》(2025 年版)中"HW49 其他废物"-"非特 定行业-900-047-49""-生产、研究、开发、教学、环境检测(监测)活动中,化学和 生物实验室(不包含感染性医学实验室及医疗机构化验室)产生的含氰、氟、重金 属无机废液及无机废液处理产生的残渣、残液、含矿物油、有机溶剂、甲醛有机废 液, 废酸、废碱, 具有危险特性的残留样品, 以及沾染上述物质的一次性实验用品 (不包括按实验室管理要求进行清洗后的废弃的烧杯、量器、漏斗等实验室用品)、 包装物(不包括按实验室管理要求进行清洗后的试剂包装物、容器)、过滤吸附介质等"。收集后定期交由有危险废物处理资质的单位处理。
②废活性炭
项目废活性炭来自有机废气治理产生的饱和活性炭。
本项目活性炭吸附装置设置参数表如下:

本项目活性炭吸附装置设置参数表如下:

表4-9 活性炭吸附装置参数3

		** ** ********************************	7 22 77
设备名称	具体参数	二级活体表吸附	· 装置(DA001)
	设计风量 Q	30000m/h	-
	设计流速 V	0.45m/s	《广东省生态环境厅关于印发 工业源挥发性有机物和氮氧化 物减排量核算方法的通知》(粤 环函〔2023〕538号):颗粒炭 过滤风速<0.5m/s
	所需过炭面积 8	18.5m ² 【S=Q/V/3600】	-
<u>-</u>	炭层尺寸	600*500mm	-
级活	炭箱抽尽个数	18.5÷0.5÷0.6=62 个	-
伯性炭吸险	是 民每层厚度 h	300mm	《广东省生态环境厅关于印发 工业源挥发性有机物和氮氧化 物减排量核算方法的通知》(粤 环函〔2023〕538 号):活性炭 层装填厚度不低于 300mm
置	因此,炭箱外形尺寸设	计如下(仅提供一种可行的设计	方式,以实际设计为准)
	炭箱尺寸(长 L×宽 B× 高 H)	(3.25+1.2) m×3.08m×1.4m	2 层
	过滤停留时间 T	1.11s【0.5/0.45】	《工业建筑供暖通风与空气调节设计规范》(GB 50019-2015):吸附剂和气体的接触时间宜为 0.5s~2.0s
	活性炭填装密度ρ	400kg/m^3	-

⑥活性炭吸附装置参数应符合《吸附法工业有机废气治理工程技术规范》(HJ2026-2013)相关要求: 1、进入吸附装置的颗粒物含量宜低于 1mg/m³; 2、进入吸附装置的废气温度宜低于 40°C。

项目颗粒物产生浓度>1mg/m³,经喷淋塔处理后<1mg/m³;废气温度≤40℃,满足《吸附法工业有机废气治理工程技术规范》(HJ2026-2013)相关要求。经计算,项目二级活性炭吸附装置的一次活性炭填装量为4.32t。

表4-10 废活性炭产生量一览表

排气口编号	收集量 (t/a)	处理量 (t/a)	二级活 性炭 装填量 (t)	更换 频次	废活性炭产生量 (含有机炭(マン
DA001	0.0340	0.0255 ^b	4.32	4 ^a	17.31

注:

- ①a 根据《深圳市工业有机废气治理用活性炭更换技术指引(试行)。 2023-05): 活性炭更换周期一般不应超过累计运行 500 小时或 3 个月,项目每三上发换一次活性炭;
- ②b 由于喷淋吸收能够去除一部分有机废气,活性炭吸附装置**有**发发气处理量小于 0.0255t/a, 项目以最大吸附量:
- ③根据《广东省生态环境厅关于印发工业源挥发性有机物和氢氧化物减排量核算方法的通知》(粤环函[2023]538号)中"活性炭年更换量*活性炭炭附比例"取 15%,项目废气处理设施的削减量 4.32*4/a*15%=2.592t/a>0.0255t/a(火火量),满足 VOCs 削减要求。

废活性炭属于《国家危险废物名录》(2025年版)中编号为 HW49 类危险废物,废物代码为 900-039-49,烟气、VOC、台理过程(不包括餐饮行业油烟治理过程)产生的废活性炭,化学原料和化炭和品脱色(不包括有机合成食品添加剂脱色)、除杂、净化过程产生的废活性炭(不包括 900-405-06、772-005-18、261-053-29、265-002-29、384-003-29、27-001-29 类废物),定期委托有危险废物处理资质单位处理。

③废试剂包装和废耗材

项目使**%**瓶装电解液等会产生废试剂包装,产生量约 0.05t/a;实验室会产生一定的法,试剂的抹布、手套、一次性口罩等废耗材,产生量约 0.05t/a。属于《国家危险发物名录》(2025 年版)中"HW49 其他废物"-"非特定行业-900-047-49""-生产、研究、开发、教学、环境检测(监测)活动中,化学和生物实验室(不包含感染性医学实验室及医疗机构化验室)产生的含氰、氟、重金属无机废液及无机废液处理产生的残渣、残液,含矿物油、有机溶剂、甲醛有机废液,废酸、废碱,具有危险特性的残留样品,以及沾染上述物质的一次性实验用品(不包括按实验室管理要求进行清洗后的废弃的烧杯、量器、漏斗等实验室用品)、包装物(不包括按实验室

管理要求进行清洗后的试剂包装物、容器)、过滤吸附介质等"。收集后定期交由 有危险废物处理资质的单位处理。

④实验室废液

清洗废水:根据项目给排水分析,清洗废水产生量 0.3204t/a。

织物基集流体研发废水(包括硅烷化、聚合、吸附催化剂、沉积等工序废水):根据物料平衡产生量约 0.0301t/a。

废酸:根据物料平衡产生量约 0.00001t/a。

因此实验室废液产生量约为 0.351t/a,属于《国家危险废物名录》 2025 年版)中"HW49 其他废物"-"非特定行业-900-047-49""-生产、研究、开发、教学、环境检测(监测)活动中,化学和生物实验室(不包含感染性医学实验室及医疗机构化验室)产生的含氰、氟、重金属无机废液及无机废液处理产品的残渣、残液,含矿物油、有机溶剂、甲醛有机废液,废酸、废碱,具有危险等性的残留样品,以及沾染上述物质的一次性实验用品(不包括按实验室管理要求进行清洗后的废弃的烧杯、量器、漏斗等实验室用品)、包装物(不包括按实验室管理要求进行清洗后的成剂包装物、容器)、过滤吸附介质等"。 2025 年版)

4-11 项目危废产生情况表

序号	危险废物名称	危废类	危险废物代码	产生量 (吨/ 年)	产生工序及装置	形态	主要成分	有害成分	产废周期	危险特性	污染防治措施
	咳 ★ 皮 水	HW49 其他 废物	900-047-49	2	废气处理	液体	CODer SS	CODer, SS	毎半年	T/C/I/R	交由
2	废活性炭	HW49 其他 废物	900-039-49	17.31	废气处理	固体	炭、有机 废气	有机废	3 个 月	Т	有危险

3	废试剂包装和废耗材	HW49 其他 废物	900-047-49	0.1	研发试验	固体	化学品	化学品	每年	T/C/I/R	废物处理资质
4	实验室废液	HW49 其他 废物	900-047-49	0.351	研发试验	液体	废液、废酸	废液、废 酸	毎年	TAN	单 位 处 置

备注: T: 毒性; C: 腐蚀性; I: 易燃性; R: 反应性。

表 4-12 本项目危险废物贮存场所(设施发基本情况

序号	贮存场所(设 施)名称	危险废物名称	存储措施	2V	上占地 面积	贮存方式	贮存 能力	
1		喷淋废水	TIAN TO STATE OF THE PARTY OF T	\$0-		桶装	2t	半年
2	危险废物暂	废活性炭	不同 允 多分 类 《 及放置、	1.00	约	桶装	5t	3 个
3	存间	废试剂包装和 废耗材	防渗、 防漏	1F	19m ²	桶装	1t	1年
4		实验室废妆				桶装	1t	1年

2、建设单位对固体发物采取暂存措施

(1) 一般工业有废

根据《一般工业固体废物贮存和填埋污染控制标准》(GB18599-2020)可知"采用库房、包装工具(罐、桶、包装袋等)贮存一般工业固体废物过程的污染控制,不适宜本标准,其贮存过程应满足相应防渗漏、防雨淋、防扬尘等环境保护要求"。本本自一般工业固体废物贮存在实验室内部,属于采用库房贮存一般工业固体废物、不适用《一般工业固体废物贮存和填埋污染控制标准》(GB18599-2020),但本项目一般固废贮存应满足相应防渗漏、防雨淋、防扬尘等环境保护要求。

企业需自觉履行固体废物申报登记制度。一般工业固体申报管理应认真落实《中华人民共和国固体废物污染环境防治法》第三十六条和第三十七条规定;第三十六条:产生工业固体废物的单位应当建立健全工业固体废物产生、收集、贮存、

运输、利用、处置全过程的污染环境防治责任制度,建立工业固体废物管理台账,如实记录产生工业固体废物的种类、数量、流向、贮存、利用、处置等信息,实现工业固体废物可追溯、可查询,并采取防治工业固体废物污染环境的措施。禁止向生活垃圾收集设施中投放工业固体废物。第三十七条:产生工业固体废物的单位委托他人运输、利用、处置工业固体废物的,应当对受托方的主体资格和技术能力进行核实,依法签订书面合同,在合同中约定污染防治要求。受托方运输、利用、处置工业固体废物,应当依照有关法律法规的规定和合同约定履行污染防治要求,并将运输、利用、处置情况告知产生工业固体废物的单位。

一般工业固体废物产生单位必须如实申报正常作业条件下工业固体废物的种类、产生量、流向、贮存、利用、处置状况等有关资料,以及外方有关法律、法规的真实情况,不得隐瞒不报或者虚报、谎报。一般工业因为废物产生单位应于每年3月1日前网上申报登记上一年度的信息,通过省固定废物管理信息平台依法申报固体废物的种类、产生量、流向、交接、贮存、利用、处置情况;年产生、利用、处置量100吨及以上的,应于每季度的10.00两风上申报等级上一季度的信息。申报企业要签署承诺书,依法向县级环保护、申报登记信息,确保申报数据的真实性、准确性和完整性。

一般工业固体废物贮存或处置,在实验室采用库房或包装工具贮存,贮存过程应满足相应防渗漏、防雨流、防扬尘等环境保护要求。一般工业固体废物的贮存设施、场所必须采取防流、防流失、防渗漏或者其他防止污染环境的措施,必须符合国家环境保护标准,并对未处理的固体废物做出妥善处理,安全存放。对暂时不利用或者不减少收利用的一般工业固体废物,必须配套建设防雨淋、防渗漏、易识别等符合环境保护标准和管理要求的贮存设施或场所,以及足够的流转空间,按国家还保护的技术和管理要求,有专人看管,建立便于核查的进、出物料的台账记录和固体废物明细表。

(2) 危险废物

资质的单位进行处置。

项目运营期产生的危险废物均按《危险废物贮存污染控制标准》 (GB18597-2023)相关规定进行分类收集后,暂存于危废暂存间内,并定期委托有 危险固废暂存间内根据不同性质的危废进行分区堆放储存,存储区严格按照《危险废物贮存污染控制标准》(GB18597-2023)建设和维护使用,并做到以下几点:

- ①产生危废的实验室,必须设置专用的危废收集间,产生的液体危废如实验室 废液放置在容器中,绝不能和其他废物一起混合收集,贮存危险废物时应按危险废物的种类和特性进行分区贮存。
- ②对于危废的收集及贮存,应根据危险固废的成分,用符合国家标准的对腐蚀、不易破损、变形和老化的容器贮存,并按规定在贮存危废容器上贴上标题 详细注明危废的名称、重量、成分、特性以及发生泄漏、扩散污染事故时的应急措施和补救办法。
- ③危险废物的收集和转运过程中,应采取相应的安全成为和污染防治措施,包括防爆、防火、防中毒、防感染、防泄漏、防飞扬、发育或其他防止污染环境的措施。
- ④危险废物贮存设施要符合国家危险固定产存场所的建设要求,危险固废贮存设施要建有堵截泄漏的裙脚,地面与裙体界坚固的防渗材料建造,并建有隔离设施和防风、防晒、防雨设施,基础防护、用 2mm的高密度聚乙烯材料组成,表面用耐腐蚀材料硬化。储存间内清理中的泄漏物也属于危险废物,必须按照危险废物处理原则处理。
- ⑤定期统计公司《死"究中心的危险废物名称、产生量、暂存时间、交由处置时间等,除此之外,危险废物存放间还要记录危险废物的名称、来源、数量、特性和包装容器的流机、出库日期及接受单位名称。

项目危废贮存安全管理规定:

- **上**危险废物暂存间必须粘贴标签,注明名称、来源、数量、特性;必须定期对危险废物储存库进行检查,发现破损,应及时采取措施清理更换;危险废物储存库必须设置警示标志。
- ②根据《广东省固体废物污染环境防治条例》,建设单位应当按照规定制定危险废物管理计划,建立危险废物台账,如实记载产生的危险废物种类、数量、流向、贮存、利用、处置等信息。危险废物台账应当保存十年以上。

项目危废运输注意事项:

危险废物产生单位在转移危险废物前,须按照国家有关规定报批危险废物转移 计划,经批准后,产生单位应当向移出地环境保护行政主管部门申请领取联单。危 废的外运应委托有危险化学品运输质资的单位负责运输。运输时要按规定路线行 驶,勿在居民区和人口稠密区停留。

综上,项目运营期固体废物通过以上措施处理后,可以得到及时、妥善的处理和处置,不会造成二次污染,对周围环境影响很小,环保措施可行。

五、地下水、土壤

土壤、地下水污染具有不易发现和一旦污染很难治理的特点,因此,土壤、地下水污染的环境管理应采取主动的预防保护和被动的防渗治理等结合。

本项目废水、固废可以通过大气环境的干、湿沉降、**对**的迁移等环节进入土壤、地下水,但最主要的危险是事故情况下废水/废资,产收集、贮放、运输、处置等环节的不严格或不妥善,造成土壤、地下水污染之为了防止事故性废水/废液以及正常研发过程危废对周围土壤、地下水环境(水)响,本项目土壤、地下水污染防治措施按照"源头控制、分区防治、污染水龙、应急响应"相结合的原则,从污染物的产生、入渗、扩散、应急响应进入控制。

1、源头控制措施

严格按照国家相关规范表求,对实验过程、管道、设备、废液储存、废水输送等采取相应的措施, 企业上和降低废液/废水的跑、冒、滴、漏,将废液/废水泄漏的环境风险事故降低到最低程度。

2、分控处控措施

参照《环境影响评价技术导则 地下水环境》(HJ610-2016)中地下水污染防渗分层。照表如下:

表4-13 地下水污染防渗分区对照表

	天然气包气 带防污性能	污染控制 难易程度	污染物类型	污染防渗技术要求
重点	弱	难	4 4 5 10 1	MANUAL INCOME
防渗	中-强	难	│ 重金属、持久性 │ │	等效粘土防渗层Mb≥6.0m, K≤1.0×10 ⁻⁷ cm/s,或参考GB18598执行
X	弱	易	H WH J X W	K_1.0×10 CHrs, S/S×3 GB10570[X[]]
一般	弱	易-难	其他类型	等效粘土防渗层Mb≥1.5m,

防渗	中-强	难		K≤1.0×10 ⁻⁷ cm/s,或参考GB16889执行
X	中	易	重金属、持久性	
	强	易	有机污染物	
一 简单 防渗 区	中-强	易	其他类型	地面硬化

根据企业各功能单元可能产生废水/废液、废气的地区,划分为重点污染防治区、一般污染防治区;项目实验室、化学品仓、危废暂存间地面铺设环氧地坪,液态危废配套防渗漏托盘;采取上述措施后,产生的废水、废液通过泄漏至地面、再通过垂直入渗、地面漫流对土壤及地下水产生影响的概率较小。

表 4-13 土壤、地下水污染影响类型与影响途径表

————— 污染源	污染物类型	防渗措施	污染途径
实验室、化 学品仓	[3-(甲基丙烯酰氧基)丙基]三甲氧基 硅烷等化学品	地面均硬底化处理,实验室、 学品仓、危废仓设置防渗地、 该防渗地坪的具体技术 水为	y 1
危废仓	实验废液	"等效黏土防渗层 Mb 40.0m,渗透系数≤10-7cm/s",从最固废暂存间必须防雨、防风、防风、设置防渗地坪,蒸烧渗地坪的具体技术要求。等效黏土防渗层 Mb≥1sm 渗透系数≤10-7cm/s"。三级 连池、生活污水管道均采入,用防渗材料。	无地下水污染途径 (若地面开裂、防渗 地坪开裂等情况下, 可能导致垂直入渗)。

为保护周围土壤、地下水环境,本报告提出以下土壤、地下水污染防治措施:

①企业实验室地面做好防渗、防漏、防腐蚀; 固废分类收集、存放,一般固废暂存于一般固废暂存场所,防风、防雨,地面进行硬化; 危险废物贮存于危废仓库,液态危废采用密闭桶装储存,并放置在防泄漏托盘上,地面铺设环氧地坪等,做好防渗、防漏场腐蚀、防晒、防淋等措施;

②本验过程严格控制,定期对设备等进行检修,防止跑、冒、滴、漏现象发生; 原体产均存放在室内,分区存放,能有效避免雨水淋溶等对土壤和地表水造成二次 污染;实验室内部管路均采用 PP 管,定期对管线、接头、阀门严格检查保证污水 能够顺畅排入出租方总管,无跑冒滴漏等问题。

本项目建设针对各类土壤、地下水污染源都做出了相应的防范措施,能够有效 地减轻因项目建设对土壤和地下水产生的影响。因此,本次评价认为在采取了有效 的地下水防护措施后,不会对区域土壤和地下水产生较大影响,不会影响区域土壤 和地下水的现状使用功能。

六、生态

本项目在租赁孵化楼内建设,当地已属于建成区,不涉及新增建设用地,本次 不作生态环境影响分析。

七、环境风险

(1) 评价依据

根据《建设项目环境风险评价技术导则》(HJ169-2018),环境风险逐价应以 突发性事故导致的危险物质环境急性损害防控为目标,对建设项目的环境风险进行 分析、预测和评估,提出环境风险预防、控制、减缓措施,明确环境风险监控及应 急建议要求,为建设项目环境风险防控提供科学依据。

(2) 风险调查

当只涉及一种危险物质时,让**这**物质的总量与其临界量比值,即为Q; 当存在多种危险物质时,**没**下式计算物质总量与其临界量比值

$$Q = \frac{q_1}{Q_1} + \frac{q_2}{Q_2} + \dots + \frac{q_n}{Q_n}$$

式中: q2...nq——每种危险物品的最大存在总量, t;

Q 💢 Q2...Qn——每种危险物质的临界量, t。

Q<10; (2) 10≤Q100; (3) Q≥100_°

本项目Q值计算见下表;

表 4-20 风险分析内容表

物质名称	CAS 号	试剂	最大存在量 (qn),t	临界值 (Qn),t	Q值	
铜及其化合物(以铜离子计)	/	硫酸铜	0.005ª	0.25	0.02	
甲醛	50-00-0	甲醛水溶液	0.0005^{b}	0.5	0.001	

镍及其化合物(以镍计)	/	正极材料 (三元镍钴 锰)	0.005°	0.25	0.02			
钴及其化合	/	正极材料 (三元镍钴 锰)	0.005°	0.25	0.02			
物(以钴计)	/	正极材料 (钴酸锂)	0.005°	0.25	0.02			
锰及其化合 物(以锰计)	/	正极材料 (三元镍钴 锰)	0.005°	0.25	0.02			
六氟磷酸锂	/	电解液	0.0002	50 ^d	9:9800 04			
二甲苯	1330-20-7	二甲苯	0.00001	10	01000001			
氟磺酸	7789-21-1	Nafion117 溶 液	0.000054°	10	0.0000054			
硫酸	7664-93-9	硫酸	0.001	1.00	0.0001			
合计								

- a 硫酸铜最大储存量 10kg,核算铜最大储存量 5kg;
- b 甲醛水溶液最大储存量 1kg, 其中甲醛含量 30-50%,
- c 正极材料(三元镍钴锰)、正极材料(钴酸锂)最 对评价等级结果无影响,不折算,储存量以 5kg,tk。d 电解液中成分六氟磷酸锂急性毒性类别 3, 大流导则 B.2,推荐临界值 50t;
- eNafion117溶液最大储存量 1kg, 其中氟碳酸含量 5-5.4%, 以最大 5.4%计,核算氟磺酸最大 储存量 0.000054kg。

根据上表可知,本项目Q值 11104<1。因此判定环境风险潜势为I,风险评 价等级为简单分析。

(3) 环境风险识别

根据《建设项本等风险评价技术导则》(HJ169-2018),物质危险性识别包 燃料、中间产品、副产品、最终产品、污染物、火灾和爆炸伴生 文项目生产原料、生产工艺、贮存、运输、"三废"处理过程中涉及的主 **硫酸铜、甲醛水溶液等。**

· 根据国内外同行业事故统计分析及典型事故案例资料,项目主要生产装置、贮 运系统、公用工程系统、环保工程设施及辅助生产设施等中的风险源项为贮运系统、 环保工程设施、公用工程系统,风险类型为化学品及危险废物泄漏事故、废气处理 系统事故、废水处理系统事故、火灾事故。本项目风险识别如下。

表 4-21 建设项目环境风险识别表

事件类型	环境风 险描述	污染物	风险类 别	环境影响 途径及后	危险 单元	风险防范措施
I	1777174		/4/4	~ L/\/	, , , ,	

				果		
化学品泄 漏(硫酸 铜、甲醛 水溶液 等)	通过地 面漫流 进入外 环境	铜、甲醛等	地表水、 地下水、 土壤	污染地表 水、土壤、 地下水	化学品仓	设置墁坡,做好防渗措施,发现泄漏立刻采用 吸毡、黄沙、木屑等吸 附并收集后桶装后交由 资质单位处理
危险废物 泄漏	通过地 面漫流 进入外 环境	实验废液	地表水、 地下水、 土壤	污染地表 水、土壤、 地下水	危废 暂存 间	设置墁坡,做好防渗措施
化学品 仓、危废 暂存间火 灾、爆炸 伴生/次 生污染	通过大 气进入 外环境	CO 等	大气环境	通过燃烧 烟气扩散, 对周围大 气环短时 成短时污染	化品 仓 危 暂 间	设置门槛 式 浸坡,配套 消防设施、禁止明火和 放易燃杂物

(4) 风险防范措施

①原辅材料储运的风险防范措施

加强原辅料的仓储管理,按有关防火规范设置储存场所。仓库门口设置5cm左右缓坡(门槛),防止包装损坏时,原料流发到外部,遇火源引发火灾等。考虑到搬运时可能会使用到人力叉车,建议发发坡砌成斜坡状,方便出入。

原料分类、分区贮存,并制定、报登记、保管、领用、操作等规范的规章制度。在原材料仓库配置砂土箱/吸收等和适当的空容器、工具,以便在发生事故时收集泄漏物料。

②危险废物贮存风险防范措施

1)危废暂存内中各类废物使用密闭容器储存并分类存放,严禁混合存放。定期对危废储量器进行检查,防止泄漏。危废暂存间要做好防风、防雨、防晒、防渗措施工并设置围堰。

危险废物在卸料及搬运时要轻拿轻放,以免损坏容器或包装袋,引起泄漏,工人需配备防毒面具、防护服、防腐手套等防护用品及发生泄漏时处理工具。

- 3) 危险废物临时堆放场要做好防风、防雨、防晒、防渗。
- 4) 在危险废物仓库门外设置"危险废物"的警示牌,仓库内标识不同危险废物的堆放位置:
 - 5) 按规范分类堆放,加强管理,避免堆放过量,及时清理运走。

6)在仓库设置门槛或墁坡,发生突发环境事件时产生的废水能截留在仓库内, 以免废水对周围环境造成二次污染。

③化学品使用过程的风险防范措施

- 1)实验室应当遵循最小量储存原则,尽量减少危险化学品的存储量。
- 2) 所有危险化学品都应储存在专用试剂柜中,确保试剂完好无损,同时,应定期检查,发现问题及时处理。
- 3) 试剂柜必须有准确、清晰的警示标识。试剂瓶的标签上应包含化学品的名称、化学式、危险性质、安全处理方法等信息,以便在紧急情况下能够的速采取措施。
- 4)不同的化学品可能产生化学反应,必须将它们分开保护特别是那些可能 发生剧烈反应或生成有毒气体的化学品,更应严格分开存放护
 - 5)实验操作必须在通风处内操作。
- 6)实验室内应严禁吸烟、使用明火等可能**以**上火灾的行为。同时,应避免对化学品容器进行剧烈撞击,以防发生爆炸等。
- 7)某些化学品在特定条件下可能发气氧化自燃。因此,对于这些化学品,应特别关注其存放环境,避免与氧化水流放,并定期检查其状态。
 - 8) 配备相应化学品吸附效 地漏时减少影响。

(5) 风险分析结论

综上所述,项目,于生产企业,不属于关于发布《突发环境事件应急预案备案行业名录(指导性意见)》的通知中要求进行突发环境事件应急预案备案的行业,的环境风险。为I,且配备有化学品泄漏吸附剂,在采取一定的风险防范措施后,项目的环境风险是可接受的。

※ 超磁辐射

无。

五、环境保护措施监督检查清单

内容 要素	排放口(编号、 名称)/污染源	污染物项目	环境保护措施	执行标准
		颗粒物、二甲 苯、氟化物、 甲醛		《大气污染物排放限 值》(DB44/27-2001) 表 2 第二时段二级标 准
	实验室废气排 放口 DA001	非甲烷总烃	喷淋塔+二级 活性炭吸附装 置+26m 排气 筒	《固定污染源挥发性 有机物综合体放标 准》 (DB44/2367-2022) 表 挥发性有机物排 放限值
		臭气浓度		《恶臭污染物排放标准》(GB14554-93) 中表2恶臭污染物排放标准值
大气环境		颗粒物、非 烷总烃 、 化 物 种苯		《大气污染物排放限 值》(DB44/27-2001) 第二时段无组织排放 监控点浓度限值
	无组织(对界)	甲醛	加强车间通风	《固定污染源挥发性 有机物综合排放标 准》 (DB44/2367-2022) 表 4 企业边界 VOCs 无组织排放限值
-#J##		臭气浓度		《恶臭污染物排放标准》(GB14554-93) 表1恶臭污染物厂界 标准值中二级"新扩 改建"限值
	无组织 (厂区 内)	非甲烷总烃	加强车间通风	《固定污染源挥发性 有机物综合排放标 准》 (DB44/2367-2022) 表 3 厂区内 VOCs 无 组织排放限值

地表水环境	生活污水	COD _{Cr} , BOD ₅ , NH ₃ -N, SS,	三级化粪池	广东省地方标准《水 污染物排放限值》 (DB44/26-2001)第			
	浓水	总氮、总磷	/	二时段三级标准			
声环境	设备噪声	等效连续 A 声级	减振、厂房隔音	《工业企业厂界环境 噪声排放标准》 (GB12348—2008) 中2类标准			
电磁辐射	/	/	/	(4)			
固体废物		卫部门清运处理; 有资质单位回收处		交专业公司的收处理。			
土壤及地下水污染防治措施	地面均硬底化处理,实验室、化学品仓、危废器。间设置防渗地坪,该防渗地坪的具体技术要求为"等效黏土防治。Mb≥6.0m,渗透系数≤10 ⁻⁷ cm/s"。一般固废暂存间必须防两、防晒、防风,设置防渗地坪,该防渗地坪的具体技术要求为"等效黏土防渗层 Mb≥1.5m,渗透系数≤10 ⁻⁷ cm/s"。三级化粪池、生活污水管道均采用专用防渗材料。						
生态保护措施	无						
环境风险 防范措施	1、危废仓地面需采用防护材料处理,铺设防渗漏的材料。 2、定期检查危废液致的桶是否完整,避免包装桶破裂引起易燃液体泄漏。 3、严格执行安全和消防规范。车间内合理布置各生产装置,预留足够的安全距离,以利于消防和疏散。 4、加强车间通风,避免造成有害物质的聚集。 5、严格的防火、防爆设计规范的要求进行设计,配置相应的灭火装置和设施,设置火灾报警系统,以便自动预警和及时组织灭火扑救。定期检查废气治理设施和更换活性炭,保证废气治理设施正常运						
其他环境	无						

六、结论

本项目在研发试验过程中会产生废气、废水、减声、固体废物等,在全面落实本报告表提出的各项环境保护措施的基础上,从实做到"三同时",并在营运期内持之以恒加强环境管理的前提下,本项目在3.本上对周围环境的影响可以控制在允许的范围以内,不会改变所在地区的环境功能属性。且本项目占地为商业设施用地,对居住和公共环境基本无干扰,从2个和安全隐患从环境保护角度,本项目环境影响可行。

A STATE OF THE PARTY OF THE PAR